亚洲欧美一区二区不卡-国产精品二区三区四区五区六区-日韩中文字幕欧美在线观看-日本精品一区二区三区日噜

歡迎來到吉林省華博科技工業(yè)有限公司網(wǎng)站!
咨詢熱線

13009129951

當(dāng)前位置:首頁  >  技術(shù)文章  >  電壓擊穿試驗(yàn)儀美標(biāo)標(biāo)準(zhǔn)ASTM D149

電壓擊穿試驗(yàn)儀美標(biāo)標(biāo)準(zhǔn)ASTM D149

更新時間:2009-03-19  |  點(diǎn)擊率:8004

Designation: D 149 – 97a (Reapproved 2004)
Standard Test Method for
Dielectric Breakdown Voltage and Dielectric Strength of
Solid Electrical Insulating Materials at Commercial Power
1
Frequencies
This standard is issued under the fixed designation D 149; the number immediay following the designation indicates the year of
original adoption or, in the case of revision, the year of last revision. A number in parentheses indicates the year of last reapproval. A
superscript epsilon (e) indicates an editorial change since the last revision or reapproval.
This standard has been approved for use by agencies of the Department of Defense.
1. Scope over). With the addition of instructions modifying Section 12,
this test method may be used for proof testing.
1.1 This test method covers procedures for the determina-
1.8 ThistestmethodissimilartoIECPublication243-1.All
tion of dielectric strength of solid insulating materials at
2,3 procedures in this method are included in IEC 243-1. Differ-
commercial power frequencies, under specified conditions.
ences between this methodand IEC 243-1 are largely editorial.
1.2 Unless otherwise specified, the tests shall be made at 60
1.9 This standard does not purport to address all of the
Hz. However, this test method may be used at any frequency
safety concerns, if any, associated with its use. It is the
from 25 to 800 Hz. At frequencies above 800 Hz, dielectric
responsibility of the user of this standard to establish appro-
heating may be a problem.
priate safety and health practices and determine the applica-
1.3 This test method is intended to be used in conjunction
bility of regulatory limitations prior to use. Specific hazard
with anyASTM standard or other document that refers to this
statements are given in Section 7. Also see 6.4.1.
test method. References to this document should specify the
particular options to be used (see 5.5).
2. Referenced Documents
1.4 It may be used at various temperatures, and in any
4
2.1 ASTM Standards:
suitable gaseous or liquid surrounding medium.
D 374 Test Methods for Thickness of Solid Electrical Insu-
1.5 This test method is not intended for measuring the
lation
dielectric strength of materials that are fluid under the condi-
D 618 Practice for Conditioning Plastics for Testing
tions of test.
D 877 Test Method for Dielectric Breakdown Voltage of
1.6 This test method is not intended for use in determining
Insulating Liquids Using Disk Electrodes
intrinsic dielectric strength, direct-voltage dielectric strength,
D 1711 Terminology Relating to Electrical Insulation
or thermal failure under electrical stress (see Test Method
D 2413 Practice for Preparation of Insulating Paper and
D3151).
Board Impregnated with a Liquid Dielectric
1.7 This test method is most commonly used to determine
D 3151 Test Method forThermal Failure of Solid Electrical
thedielectricbreakdownvoltagethroughthethicknessofatest
Insulating Materials Under Electric Stress
specimen (puncture). It may also be used to determine dielec-
D 3487 Specification for Mineral Insulating Oil Used in
tric breakdown voltage along the interface between a solid
Electrical Apparatus
specimen and a gaseous or liquid surrounding medium (flash-
D 5423 Specification for Forced-Convection Laboratory
Ovens for Electrical Insulation
1
This test method is under the jurisdiction of ASTM Committee D09 on 2.2 IEC Standard:
Electrical and Electronic Insulating Materials and is the direct responsibility of
Pub. 243-1 Methods of Test for Electrical Strength of Solid
Subcommittee D09.12 on Electrical Tests. 5
Insulating Materials—Part 1: Tests at Power Frequencies
Current edition approved March 1, 2004. Published March 2004. Originally
approved in 1922. Last previous edition approved in 1997 as D 149–97a.
2
Bartnikas, R., Chapter 3, “High Voltage Measurements,” Electrical Properties
4
of Solid Insulating Materials, Measurement Techniques, Vol. IIB, Engineering For referenced ASTM standards, visit the ASTM website, www.astm.org, or
Dielectrics, R. Bartnikas, Editor, ASTM STP 926, ASTM, Philadelphia, 1987. contact ASTM Customer Service at service@astm.org. For Annual Book of ASTM
3
Nelson, J. K., Chapter 5, “Dielectric Breakdown of Solids,” Electrical Standards volume information, refer to the standard’s Document Summary page on
Properties of Solid Insulating Materials: Molecular Structure and Electrical the ASTM website.
5
Behavior, Vol. IIA, Engineering Dielectrics, R. Bartnikas and R. M. Eichorn, Available from the International Electrotechnical Commission, Geneva, Swit-
Editors, ASTM STP 783, ASTM, Philadelphia, 1983. zerland.
Copyright (C) ASTM International, 100 Barr Harbor Drive, PO Box C700, West Conshohocken, PA 19428-2959, United States.

D 149 – 97a (2004)
2.3 ANSI Standard: environmentalsituations.Thistestmethodisusefulforprocess
C68.1 Techniques for Dielectric Tests, IEEE Standard No. control, acceptance or research testing.
6
4 5.3 Resultsobtainedbythistestmethodcanseldombeused
directly to determine the dielectric behavior of a material in an
3. Terminology actual application. In most cases it is necessary that these
results be evaluated by comparison with results obtained from
3.1 Definitions:
other functional tests or from tests on other materials, or both,
3.1.1 dielectric breakdown voltage (electric breakdown
in order to estimate their significance for a particular material.
voltage), n—the potential difference at which dielectric failure
5.4 Three methods for voltage application are specified in
occurs under prescribed conditions in an electrical insulating
Section 12: Method A, Short-Time Test; Method B, Step-by-
material located between two electrodes. (See also Appendix
StepTest; and Method C, Slow Rate-of-RiseTest. MethodAis
X1.)
the most commonly-used test for quality-control tests. How-
3.1.1.1 Discussion—The term dielectric breakdown voltage
ever, the longer-time tests, Methods B and C, which usually
is sometimes shortened to “breakdown voltage.”
will give lower test results, may give more meaningful results
3.1.2 dielectric failure (under test), n—an event that is
whendifferentmaterialsarebeingcomparedwitheachother.If
evidencedbyanincreaseinconductanceinthedielectricunder
a test set with motor-driven voltage control is available, the
test limiting the electric field that can be sustained.
slow rate-of-rise test is simpler and preferable to the step-by-
3.1.3 dielectric strength, n—the voltage gradient at which
step test. The results obtained from Methods B and C are
dielectric failure of the insulating material occurs under spe-
comparable to each other.
cific conditions of test.
5.5 Documents specifying the use of this test method shall
3.1.4 electric strength, n—see dielectric strength.
also specify:
3.1.4.1 Discussion—Internationally, “electric strength” is
5.5.1 Method of voltage application,
used almost universally.
5.5.2 Voltage rate-of-rise, if slow rate-of-rise method is
3.1.5 flashover, n—a disruptive electrical discharge at the
specified,
surface of electrical insulation or in the surrounding medium,
5.5.3 Specimen selection, preparation, and conditioning,
which may or may not cause permanent damage to the
5.5.4 Surrounding medium and temperature during test,
insulation.
5.5.5 Electrodes,
3.1.6 For definitions of other terms relating to solid insulat-
5.5.6 Wherever possible, the failure criterion of the current-
ing materials, refer to Terminology D 1711.
sensing element, and
4. Summary of Test Method 5.5.7 Any desired deviations from the recommended proce-
dures as given.
4.1 Alternating voltage at a commercial power frequency
5.6 If any of the requirements listed in 5.5 are missing from
(60 Hz, unless otherwise specified) is applied to a test
the specifying document, then the recommendations for the
specimen. The voltage is increased from zero or from a level
several variables shall be followed.
well below the breakdown voltage, in one of three prescribed
5.7 Unless the items listed in 5.5 are specified, tests made
methods of voltage application, until dielectric failure of the
with such inadequate reference to this test method are not in
test specimen occurs.
conformancewiththistestmethod.Iftheitemslistedin5.re
4.2 Mostcommonly,thetestvoltageisappliedusingsimple
not closely controlled during the test, the precisions stated in
test electrodes on opposite faces of specimens. The specimens
15.2 and 15.3 may not be realized.
may be molded or cast, or cut from flat sheet or plate. Other
5.8 Variations in the failure criteria (current setting and
electrode and specimen configurations may be used to accom-
response time) of the current sensing element significantly
modate the geometry of the sample material, or to simulate a
affect the test results.
specific application for which the material is being evaluated.
5.9 Appendix X1. contains a more complete discussion of
the significance of dielectric strength tests.
5. Significance and Use
5.1 The dielectric strength of an electrical insulating mate- 6. Apparatus
rial is a property of interest for any application where an
6.1 Voltage Source—Obtain the test voltage from a step-up
electrical field will be present. In many cases the dielectric
transformer supplied from a variable sinusoidal low-voltage
strength of a material will be the determining factor in the
source. The transformer, its voltage source, and the associated
design of the apparatus in which it is to be used.
controls shall have the following capabilities:
5.2 Tests made as specified herein may be used to provide
6.1.1 The ratio of crest to root-mean-square (rms) test
part of the information needed for determining suitability of a
voltage shall be equal to =2 6 5% (1.34 to 1.48), with the
materialforagivenapplication;andalso,fordetectingchanges
test specimen in the circuit, at all voltages greater than 50 % of
or deviations from normal characteristics resulting from pro-
the breakdown voltage.
cessing variables, aging conditions, or other manufacturing or
6.1.2 The capacity of the source shall be sufficient to
maintainthetestvoltageuntildielectricbreakdownoccurs.For
most materials, using electrodes similar to those shown in
6 Table 1, an output current capacity of 40 mA is usually
Available fromAmerican National Standards Institute (ANSI), 25 W. 43rd St.,
4th Floor, New York, NY 10036. satisfactory. For more complex electrode structures, or for

D 149 – 97a (2004)
A
TABLE 1 Typical Electrodes for Dielectric Strength Testing of Various Types of Insulating Materials
Electrode
B,C
Description of Electrodes Insulating Materials
Type
1 Opposing cylinders 51 mm (2 in.) in diameter, 25 mm (1 in.) thick with flat sheets of paper, films, fabrics, rubber, molded plastics, laminates,
edges rounded to 6.4 mm (0.25 in.) radius boards, glass, mica, and ceramic
2 Opposing cylinders 25 mm (1 in.) in diameter, 25 mm (1 in.) thick with same as for Type 1, particularly for glass, mica, plastic, and ceramic
edges rounded to 3.2 mm (0.125 in.) radius
3 Opposing cylindrical rods 6.4 mm (0.25 in.) in diameter with edges same as for Type 1, particularly for varnish, plastic, and other thin film and
D
rounded to 0.8 mm (0.0313 in.) radius tapes: where small specimens necessitate the use of smaller electrodes,
or where testing of a small area is desired
4 Flat plates 6.4 mm (0.25 in.) wide and 108 mm (4.25 in.) long with edges same as for Type 1, particularly for rubber tapes and other narrow widths
square and ends rounded to 3.2 mm (0.125 in.) radius of thin materials
E
5 Hemispherical electrodes 12.7 mm (0.5 in.) in diameter filling and treating compounds, gels and semisolid compounds and greases,
embedding, potting, and encapsulating materials
6 Opposing cylinders; the lower one 75 mm (3 in.) in diameter, 15 mm same as for Types 1 and 2
(0.60 in.) thick; the upper one 25 mm (1 in.) in diameter, 25 mm
F
thick; with edges of both rounded to 3 mm (0.12 in.) radius
G
7 Opposing circular flat plates, 150 mm diameter , 10 mm thick with flat sheet, plate, or board materials, for tests with the voltage gradient
H
edges rounded to 3 to 5 mm radius parallel to the surface
A
TheseelectrodesarethosemostcommonlyspecifiedorreferencedinASTMstandards.WiththeexceptionofType5electrodes,noattempthasbeenmadetosuggest
electrode systems for other than flat surface material. Other electrodes may be used as specified in ASTM standards or as agreed upon between seller and purchaser
where none of these electrodes in the table is suitable for proper evaluation of the material being tested.
B
Electrodes are normally made from either brass or stainless steel. Reference should be made to the standard governing the material to be tested to determine which,
if either, material is preferable.
C
The electrodes surfaces should be polished and free from irregularities resulting from previous testing.
D
Refer to the appropriate standard for the load force applied by the upper electrode assembly. Unless otherwise specified the upper electrodes shall be 50 6 2g.
E
Refer to the appropriate standard for the proper gap settings.
F
The Type 6 electrodes are those given in IEC Publication 243-1 for testing of flat sheet materials. They are less critical as to concentricity of the electrodes than are
the Types 1 and 2 electrodes.
G
Other diameters may be used, provided that all parts of the test specimen are at least 15 mm inside the edges of the electrodes.
H G
The Type 7 electrodes, as described in the table and in Note , are those given in IEC Publication 243-1 for making tests parallel to the surface.
testing high-loss materials, higher current capacity may be one current setting. The electrode area may have a significant
needed.Thepowerratingformosttestswillvaryfrom0.5kVA effect upon what the current setting should be.
for testing low-capacitance specimens at voltages up to 10 kV, 6.1.7 The specimen current-sensing element may be in the
to 5 kVA for voltages up to 100 kV. primary of the step-up transformer. Calibrate the current-
6.1.3 The controls on the variable low-voltage source shall sensing dial in terms of specimen current.
be capable of varying the supply voltage and the resultant test 6.1.8 Exercise care in setting the response of the current
voltage smoothly, uniformly, and without overshoots or tran- control. If the control is set too high, the circuit will not
sients, in accordance with 12.2. Do not allow the peak voltage respondwhenbreakdownoccurs;ifsettoolow,itmayrespond
to exceed 1.48 times the indicated rms test voltage under any to leakage currents, capacitive currents, or partial discharge
circumstance. Motor-driven controls are preferable for making (corona)currentsor,whenthesensingelementislocatedinthe
short-time (see 12.2.1) or slow-rate-of-rise (see 12.2.3) tests. primary, to the step-up transformer magnetizing current.
6.1.4 Equip the voltage source with a circuit-breaking 6.2 Voltage Measurement—A voltmeter must be provided
device that will operate within three cycles. The device shall for measuring the rms test voltage. A peak-reading voltmeter
disconnect the voltage-source equipment from the power may be used, in which case divide the reading by =2toget
service and protect it from overload as a result of specimen rms values. The overall error of the voltage-measuring circuit
breakdown causing an overload of the testing apparatus. If shall not exceed 5 % of the measured value. In addition, the
prolonged current follows breakdown it will result in unnec- response time of the voltmeter shall be such that its time lag
essary burning of the test specimens, pitting of the electrodes, will not be greater than 1% of full scale at any rate-of-rise
and contamination of any liquid surrounding medium. used.
6.1.5 The circuit-breaking device should have an adjustable 6.2.1 Measure the voltage using a voltmeter or potential
current-sensing element in the step-up transformer secondary, transformer connected to the specimen electrodes, or to a
to allow for adjustment consistent with the specimen charac- separate voltmeter winding, on the test transformer, that is
teristics and arranged to sense specimen current. Set the unaffected by the step-up transformer loading.
sensing element to respond to a current that is indicative of 6.2.2 It is desirable for the reading of the maximum applied
specimen breakdown as defined in 12.3. test voltage to be retained on the voltmeter after breakdown so
6.1.6 The current setting can have a significant effect on the that the breakdown voltage can be accuray read and re-
test results. Make the setting high enough that transients, such corded.
as partial discharges, will not trip the breaker but not so high 6.3 Electrodes—For a given specimen configuration, the
thatexcessiveburningofthespecimen,withresultanectrode dielectric breakdown voltage may vary considerably, depend-
damage, will occur on breakdown. The optimum current inguponthegeometryandplacementofthetesectrodes.For
setting is not the same for all specimens and depending upon this reason it is important that the electrodes to be used be
the intended use of the material and the purpose of the test, it described when specifying this test method, and that they be
may be desirable to make tests on a given sample at more than described in the report.

D 149 – 97a (2004)
6.3.1 One of the electrodes listed in Table 1 should be the test values. Testing in air may require excessively large
specified by the document referring to this test method. If no specimens or cause heavy surface discharges and burning
electrodes have been specified, select an applicable one from before breakdown. Some electrode systems for testing in air
Table 1, or use other electrodes mutually acceptable to the make use of pressure gaskets around the electrodes to prevent
parties concerned when the standard electrodes cannot be used flashover. The material of the gaskets or seals around the
due to the nature or configuration of the material being tested. electrodes may influence the breakdown values.
See references in Appendix X2 for examples of some special 6.4.1 When tests are made in insulating oil, an oil bath of
electrodes.Inanyeventtheelectrodesmustbedescribedinthe adequate size shall be provided. (Caution—The use of glass
report. containers is not recommended for tests at voltages above
6.3.2 The electrodes of Types 1 through 4 and Type 6 of about10kV,becausetheenergyreleasedatbreakdownmaybe
Table 1 should be in contact with the test specimen over the sufficient to shatter the container. Metal baths must be
entire flat area of the electrodes. grounded.)
6.3.3 The specimens tested using Type 7 electrodes should It is recommended that mineral oil meeting the requirements
be of such size that all portions of the specimen will be within of Specification D 3487, Type I or II, be used. It should have a
andnolessthan15mmfromtheedgesoftheelectrodesduring dielectric breakdown voltage as determined by Test Method
test. In most cases, tests usingType 7 electrodes are made with D 877 of at least 26 kV. Other dielectric fluids may be used as
the plane of the electrode surfaces in a vertical position. Tests surrounding mediums if specified. These include, but are not
made with horizontal electrodes should not be directly com- limited to, silicone fluids and other liquids intended for use in
pared with tests made with vertical electrodes, particularly transformers, circuit breakers, capacitors, or cables.
when the tests are made in a liquid surrounding medium.
6.4.1.1 The quality of the insulating oil may have an
6.3.4 Keep the electrode surfaces clean and smooth, and appreciable effect upon the test results. In addition to the
freefromprojectingirregularitiesresultingfromprevioustests. dielectric breakdown voltage, mentioned above, particulate
If asperities have developed, they must be removed. contaminants are especially important when very thin speci-
6.3.5 It is important that the original manufacture and mens (25 μm (1 mil) or less) are being tested. Depending upon
subsequent resurfacing of electrodes be done in such a manner the nature of the oil and the properties of the material being
that the specified shape and finish of the electrodes and their tested, other properties, including dissolved gas content, water
edges are maintained. The flatness and surface finish of the content, and dissipation factor of the oil may also have an
electrode faces must be such that the faces are in close contact effect upon the results. Frequent replacement of the oil, or the
with the test specimen over the entire area of the electrodes. use of filters and other reconditioning equipment may be
Surface finish is particularly important when testing very thin necessary to minimize the effect of variations of the quality of
materials which are subject to physical damage from improp- the oil on the test results.
erly finished electrodes. When resurfacing, do not change the 6.4.1.2 Breakdown values obtained using liquids having
transition between the electrode face and any specified edge different electrical properties may not be comparable. (See
radius. X1.4.7.)Iftestsaretobemadeatotherthanroomtemperature,
6.3.6 Whenever the electrodes are dissimilar in size or the bath must be provided with a means for heating or cooling
shape, the one at which the lowest concentration of stress the liquid, and with a means to ensure uniform temperature.
exists, usually the larger in size and with the largest radius, Small baths can in some cases be placed in an oven (see 6.4.2)
should be at ground potential. in order to provide temperature control. If forced circulation of
6.3.7 In some special cases liquid metal electrodes, foil the fluid is provided, care must be taken to prevent bubbles
electrodes, metal shot, water, or conductive coating electrodes from being whipped into the fluid. The temperature shall be
are used. It must be recognized that these may give results maintainedwithin65°Cofthespecifiedtesttemperatureatthe
differing widely from those obtained with other types of electrodes, unless otherwise specified. In many cases it is
electrodes. specified that specimens to be tested in insulating oil are to be
6.3.8 Because of the effect of the electrodes on the test previously impregnated with the oil and not removed from the
results, it is frequently possible to obtain additional informa- oilbeforetesting(seePracticeD2413).Forsuchmaterials,the
tion as to the dielectric properties of a material (or a group of bath must be of such design that it will not be necessary to
materials) by running tests with more than one type of expose the specimens to air before testing.
electrode. This technique is of particular value for research 6.4.2 If tests in air are to be made at other than ambient
testing. temperature or humidity, an oven or controlled humidity
6.4 Surrounding Medium—The document calling for this chamber must be provided for the tests. Ovens meeting the
test method should specify the surrounding medium and the requirementsofSpecificationD 5423andprovidedwithmeans
test temperature. Since flashover must be avoided and the for introducing the test voltage will be suitable for use when
effects of partial discharges prior to breakdown mimimized, only temperature is to be controlled.
even for short time tests, it is often preferable and sometimes 6.4.3 Testsingassesotherthanairwillgenerallyrequirethe
necessary to make the tests in insulating liquid (see 6.4.1). use of chambers that can be evacuated and filled with the test
Breakdown values obtained in insulating liquid may not be gas, usually under some controlled pressure. The design of
comparable with those obtained in air. The nature of the such chambers will be determined by the nature of the test
insulating liquid and the degree of previous use may influence program to be undertaken.

D 149 – 97a (2004)
6.5 Test Chamber—The test chamber or area in which the 8.2 Sampling procedures for quality control purposes
tests are to be made shall be of sufficient size to hold the test should provide for gathering of sufficient samples to estimate
equipment, and shall be provided with interlocks to prevent both the average quality and the variability of the lot being
accidental contact with any electrically energized parts. A examined; and for proper protection of the samples from the
number of different physical arrangements of voltage source, time they are taken until the preparation of the test specimens
measuring equipment, baths or ovens, and electrodes are in the laboratory or other test area is begun.
possible, but it is essential that (1) all gates or doors providing 8.3 For the purposes of most tests it is desirable to take
access to spaces in which there are electrically energized parts samples from areas that are not immediay adjacent to
be interlocked to shut off the voltage source when opened; ( 2) obvious defects or discontinuities in the material. The outer
clearances are sufficiently large that the field in the area of the few layers of roll material, the top sheets of a package of
electrodes and specimen are not distorted and that flashovers sheets, or material immediay next to an edge of a sheet or
and partial discharges (corona) do not occur except between roll should be avoided, unless the presence or proximity of
the test electrodes; and (3) insertion and replacement of defects or discontinuities is of interest in the investigation of
specimens between tests be as simple and convenient as the material.
possible.Visualobservationoftheelectrodesandtestspecimen 8.4 The sample should be large enough to permit making as
during the test is frequently desirable. many individual tests as may be required for the particular
material (see 12.4).
7. Hazards
9. Test Specimens
7.1 Warning—Lethal voltages may be present during this
9.1 Preparation and Handling:
test. It is essential that the test apparatus, and all associated
9.1.1 Prepare specimens from samples collected in accor-
equipment that may be electrically connected to it, be properly
dance with Section 8.
designed and installed for safe operation. Solidly ground all
9.1.2 When flat-faced electrodes are to be used, the surfaces
electrically conductive parts that any person might come into
of the specimens which will be in contact with the electrodes
contact with during the test. Provide means for use at the
shall be smooth parallel planes, insofar as possible without
completion of any test to ground any parts which: were at high
actual surface machining.
voltage during the test; may have acquired an induced charge
9.1.3 The specimens shall be of sufficient size to prevent
duringthetest;mayretaina chargeeven after disconnection of
flashover under the conditions of test. For thin materials it may
the voltage source. Thoroughly instruct all operators in the
be convenient to use specimens large enough to permit making
proper way to conduct tests safely. When making high-voltage
more than one test on a single piece.
tests, particularly in compressed gas or in oil, the energy
9.1.4 For thicker materials (usually more than 2 mm thick)
released at breakdown may be sufficient to result in fire,
the breakdown strength may be high enough that flashover or
explosion, or rupture of the test chamber. Design test equip-
intense surface partial discharges (corona) may occur prior to
ment, test chambers, and test specimens so as to minimize the
breakdown. Techniques that may be used to prevent flashover,
possibility of such occurrences and to eliminate the possibility
or to reduce partial discharge (corona) include:
of personal injury.
9.1.4.1 Immerse the specimen in insulating oil during the
7.2 Warning—Ozone is a physiologically hazardous gas at
test. See X1.4.7 for the surrounding medium factors influenc-
elevated concentrations. The exposure limits are set by gov-
ingbreakdown.Thismaybenecessaryforspecimensthathave
ernmental agencies and are usually based upon recommenda-
not been dried and impregnated with oil, as well as for those
tions made by the American Conference of Governmental
7
whichhavebeenpreparedinaccordancewithPracticeD 2413,
Industrial Hygienists. Ozone is likely to be present whenever
for example. (See 6.4.)
voltagesexistwhicharesufficienttocausepartial,orcomplete,
9.1.4.2 Machinearecessordrillaflat-bottomholeinoneor
discharges in air or other atmospheres that contain oxygen.
both surfaces of the specimen to reduce the test thickness. If
Ozone has a distinctive odor which is initially discernible at
dissimilar electrodes are used (such as Type 6 of Table 1) and
low concentrations but sustained inhalation of ozone can cause
only one surface is to be machined, the larger of the two
temporary loss of sensitivity to the scent of ozone. Because of
electrodes should be in contact with the machined surface.
thisitisimportanttomeasuretheconcentrationofozoneinthe
Caremustbetakeninmachiningspecimensnottocontaminate
atmosphere, using commercially available monitoring devices,
or mechanically damage them.
whenever the odor of ozone is persistently present or when
9.1.4.3 Apply seals or shrouds around the electrodes, in
ozone generating conditions continue. Use appropriate means,
contact with the specimen to reduce the tendency to flashover.
such as exhaust vents, to reduce ozone concentrations to
9.1.5 Materials that are not in flat sheet form shall be tested
acceptable levels in working areas.
using specimens (and electrodes) appropriate to the material
8. Sampling and the geometry of the sample. It is essential that for these
materials both the specimen and the electrodes be defined in
8.1 The detailed sampling procedure for the material being
the specification for the material.
tested should be defined in the specification for that material.
9.1.6 Whatever the form of the material, if tests of other
than surface-to-surface puncture strength are to be made,
7 define the specimens and the electrodes in the specification for
Available from the American Conference of Governmental Industrial Hygien-
ists, Building No. D-7, 6500 Glenway Ave., Cincinnati, OH 45211. the material.

D 149 – 97a (2004)
9.2 In nearly all cases the actual thickness of the test
specimenisimportant.Unlessotherwisespecified,measurethe
thickness after the test in the immediate vicinity of the area of
breakdown. Measurements shall be made at room temperature
(25 6 5°C), using the appropriate procedure of Test Methods
D374.
10. Calibration
10.1 In making calibration measurements, take care that the
valuesofvoltageattheelectrodescanbedeterminedwithinthe
accuracy given in 6.2, with the test specimens in the circuit. Rates
(V/s) 6 20 %
10.2 Use an independently calibrated voltmeter attached to
100
the output of the test voltage source to verify the accuracy of 200
500
the measuring device. Electrostatic voltmeters, voltage divid-
1000
ers,orpotentialtransformershavingcomparableaccuracymay
2000
be used for calibration measurement. 5000
10.3 At voltages above about 12 kV rms (16.9 kV peak) a FIG. 1 Voltage Profile of the Short-Time Test
sphere gap may be used to calibrate the readings of the
voltage-measuring device. Follow procedures as specified in
ANSI C68.1 in such calibration.
occasionalaveragetimetobreakdownfallingoutsidetherange
of 10 to 20 s. In this case, the times to failures shall be made
11. Conditioning
a part of the report.
11.1 The dielectric strength of most solid insulating mate- 12.2.1.3 In running a series of tests comparing different
rials is influenced by temperature and moisture content. Mate- material, the same rate-of-rise shall be used with preference
rials so affected should be brought to equilibrium with an given to a rate that allows the average time to be between 10
atmosphere of controlled temperature and relative humidity and 20 s. If the time to breakdown cannot be adhered to, the
before testing. For such materials, the conditioning should be time shall be made a part of the report.
included in the standard referencing this test method. 12.2.2 Method B, Step-by-Step Test—Apply voltage to the
11.2 Unless otherwise specified, follow the procedures in test electrodes at the preferred starting voltage and in steps and
Practice D618. duration as shown in Fig. 2 until breakdown occurs.
12.2.2.1 From the list in Fig. 2, select the initial voltage, V ,
11.3 For many materials the moisture content has more s
to be the one closest to 50 % of the experimentally determined
effect on dielectric strength than does temperature. Condition-
or expected breakdown voltage under the short time test.
ing times for these materials should be sufficiently long to
12.2.2.2 If an initial voltage other than one of the preferred
permit the specimens to reach moisture equilibrium as well as
values listed in Fig. 2 is selected, it is recommended that the
temperature equilibrium.
voltage steps be 10% of the preferred initial voltage immedi-
11.4 If the conditioning atmosphere is such that condensa-
ay below the selected value.
tionoccursonthesurfaceofthespecimens,itmaybedesirable
12.2.2.3 Apply the initial voltage by increasing the voltage
to wipe the surfaces of the specimens immediay before
from zero as rapidly as can be accomplished without introduc-
testing. This will usually reduce the probability of surface
ing a peak voltage exceeding that permitted in 6.1.3. Similar
flashover.
requirements shall apply to the procedure used to increase the
voltagebetweensuccessivesteps.Aftertheinitialstep,thetime
12. Procedure
required to raise the voltage to the succeeding step shall be
12.1 (Caution—see Section 7 before commencement of
counted as part of the time at the succeeding step.
any test.)
12.2.2.4 If breakdown occurs while the voltage is being
12.2 Methods of Voltage Application:
increased to the next step, the specimen is described as having
12.2.1 Method A, Short-Time Test—Apply voltage uni- sustained a dielectric withstand voltage, V , equal to the
ws
formlytothetesectrodesfromzeroatoneoftheratesshown voltage of the step just ended. If breakdown occurs prior to the
inFig.1untilbreakdownoccurs.Usetheshort-timetestunless end of the holding period at any step, the dielectric withstand
otherwise specified. voltage,V ,forthespecimenistakenasthevoltageatthelast
ws
12.2.1.1 When establishing a rate initially in order for it to completedstep.Thevoltageatbreakdown,V ,istobeusedto
bd
beincludedinanewspecification,selectaratethat,foragiven calculate dielectric breakdown strength. The dielectric with-
set of specimens, will give an average time to breakdown of stand strength is to be calculated from the thickness and the
between 10 and 20 s. It may be necessary to run one or two dielectric withstand voltage, V . (See Fig. 2.)
ws
preliminary tests in order to determine the most suitable 12.2.2.5 It is desirable that breakdown occur in four to ten
rate-of-rise. For many materials a rate of 500 V/s is used. steps, but in not less than 120 s. If failure occurs at the third
12.2.1.2 If the document referencing this test method speci- steporless,orinlessthan120s,whicheverisgreater,onmore
fied a rate-of-rise, it shall be used consistently in spite of thanonespecimeninagroup,thetestsshouldberepeatedwith
6

D 149 – 97a (2004)
Rates (V/s) 6 20 % Constraints
1 tbd > 120 s
2
5
Preferred starting voltages, V are 0.25, 0.50, 1, 2, 5, 10, 20, 50, and 100 kV.
s
10 Vbd = > 1.5 Vs
Step Voltage 12.5
when Increment 20
A
Vs(kV) is (kV) 25
50
5 or less 10 % of Vs
100
over 5 to 10 0.50
over 10 to 25 1 FIG. 3 Voltage Profile of Slow Rate-of-Rise Test
over 25 to 50 2
over 50 to 100 5
over 100 10
greater than 2.5 times the initial value (and at a time of over
A
Vs = 0.5 ( Vbd for Short-Time Test) unless constraints cannot be met.
________________________________________________________________ 120 s), increase the initial voltage.
Constraints
12.3 Criteria of Breakdown—Dielectric failure or dielectric
(t 1 - t0)=(t2 - t1) = ... = (60 6 5)s
Alternate step times, (20 6 3)s and (300 6 10)s breakdown (as defined in Terminology D 1711) consists of an
120s # t # 720s, for 60s steps
bd increase in conductance, limiting the electric field that can be
________________________________________________________________
sustained. This phenomenon is most commonly evidenced
FIG. 2 Voltage Profile of Step-by-Step Test
duringthetestbyanabruptvisibleandaudiblerupturethrough
the thickness of the specimen, resulting in a visible puncture
a lower initial voltage. If failure does not occur before the and decomposition of the specimen in the breakdown area.
twelfth step or greater than 720 s, increase the initial voltage. This form of breakdown is generally irreversible. Repeated
12.2.2.6 Record the initial voltage, the voltage steps, the applicationsofvoltagewillsometimesresultinfailureatlower
breakdown voltage, and the length of time that the breakdown
voltages (sometimes unmeasurably low), usually with addi-
voltage was held. If failure occurred while the voltage was
tional damage at the breakdown area. Such repeated applica-
being increased to the starting voltage the failure time shall be
tions of voltage may be used to give positive evidence of
zero.
breakdown and to make the breakdown path more visible.
12.2.2.7 Other time lengths for the voltage steps may be
12.3.1 Arapid rise in leakage current may result in tripping
specified, depending upon the purpose of the test. Commonly
of the voltage source without visible decomposition of the
used lengths are 20 s and 300 s (5 min). For research purposes,
specimen. This type of failure, usually associated with slow-
it may be of value to conduct tests using more than one time
rise tests at elevated temperatures, may in some cases be
interval on a given material.
reversible,thatis,recoveryofthedielectricstrengthmayoccur
12.2.3 Method C, Slow Rate-of-Rise Test—Apply voltage to
the test electrodes, from the starting voltage and at the rate if the specimen is allowed to cool to its original test tempera-
shown in Fig. 3 until breakdown occurs. ture before reapplying voltage. The voltage source must trip
12.2.3.1 Selecttheinitialvoltagefromshort-timetestsmade rapidlyatrelativelylowcurrentforthistypeoffailuretooccur.
as specified in 12.2.1. The initial voltage shall be reached as 12.3.2 Tripping of the voltage source may occur due to
specified in 12.2.2.3.
flashover, to partial discharge current, to reactive current in a
12.2.3.2 Use the rate-of-voltage rise from the initial value
highcapacitancespecimen,ortomalfunctioningofthebreaker.
specified in the document calling for this test method. Ordi-
Such interruptions of the test do not constitute breakdown
narily the rate is selected to approximate the average rate for a
(except for flashover tests) and should not be considered as a
step-by-step test.
satisfactory test.
12.2.3.3 Ifmorethanonespecimenofagroupofspecimens
12.3.3 If the breaker is set for too high a current, or if the
breaks down in less than 120 s, reduce either the initial voltage
breaker malfunctions, excessive burning of the specimen will
or the rate-of-rise, or both.
occur.
12.2.3.4 Ifmorethanonespecimenofagroupofspecimens
breaks down at less than 1.5 times the initial voltage, reduce 12.4 Number of Tests—Make five breakdowns unless oth-
the initial value. If breakdown repeatedly occurs at a value erwise specified for the particular material.

D 149 – 97a (2004)
13. Calculation 15. Precision and Bias
13.1 CalculateforeachtestthedielectricstrengthinkV/mm 15.1 The results of an interlaboratory study with four
or V/mil at breakdown, and for step-by-step tests, the gradient laboratories and eight materials are summarized in Table 2.
at the highest voltage step at which breakdown did not occur. This study made use of one electrode system and one test
8
13.2 Calculate the average dielectric strength and the stan- medium.
dard deviation, or other measure of variability. 15.2 Single-Operator Precision—Depending upon the vari-
ability of the material being tested, the specimen thickness,
14. Report
method of voltage application, and the extent to which tran-
14.1 Report the following information: sient voltage surges are controlled or suppressed, the coeffi-
14.1.1 Identification of the test sample. cientofvariation(standarddeviationdividedbythemean)may
14.1.2 For Each Specimen: varyfromalow1%toashighas20 %ormore.Whenmaking
14.1.2.1 Measured thickness, duplicate tests on five specimens from the same sample, the
14.1.2.2 Maximum voltage withstood (for step-by-step coefficient of variation usually is less than 9 %.
tests), 15.3 Multilaboratory Precision—The precision of tests
14.1.2.3 Dielectric breakdown voltage, made in different laboratories (or of tests made using different
14.1.2.4 Dielectric strength (for step-by-step tests), equipment in the same laboratory) is variable. Using identical
14.1.2.5 Dielectric breakdown strength, and
A
TABLE 2 Dielectric Strength Data Summary From Four Laboratories
Dielectric Strength (V/mil)
Thickness Standard Coefficient of
Material
(in. nom.) Deviation Variation (%)
mean max min
Polyethylene 0.001 4606 5330 4100 332 7.2
Terephthalate
Polyethylene 0.01 1558 1888 1169 196 12.6
Terephthalate
Fluorinated 0.003 3276 3769 2167 333 10.2
Ethylene
Propylene
Fluorinated 0.005 2530 3040 2140 231 9.1
Ethylene
Propylene
PETP fiber 0.025 956 1071 783 89 9.3
reinforced
epoxy resin
PETP fiber 0.060 583 643 494 46 7.9
reinforced
epoxy resin
Epoxy-Glass 0.065 567 635 489 43 7.6
Laminate
Crosslinked 0.044 861 948 729 48 5.6
Polyethylene
Average 8.7
A
Tests performed with specimens in oil using Type 2 electrodes (see Table 1).
14.1.2.6 Location of failure (center of electrode, edge, or types of equipment and controlling specimen preparation,
outside). electrodes and testing procedures closely, the single-operator
14.1.3 For Each Sample: precision is approachable. When making a direct comparison
14.1.3.1 Average dielectric withstand strength for step-by- ofresultsfromtwoormorelaboratories,evaluatetheprecision
step test specimens only, between the laboratories.
14.1.3.2 Average dielectric breakdown strength,
15.4 If the material under test, the specimen thickness, the
14.1.3.3 Indication of variability, preferably the standard
electrode configuration, or the surrounding medium differs
deviation and coefficient of variation,
from those listed in Table 1, or if the failure criterion of the
14.1.3.4 Description of test specimens,
current-sensing element of the test equipment is not closely
14.1.3.5 Conditioning and specimen preparation,
controlled, the precisions cited in 15.2 and 15.3 may not be
14.1.3.6 Ambient atmosphere temperature and relative hu-
realized. Standards which refer to this method should deter-
midity,
mineforthematerialwithwhichthatstandardisconcernedthe
14.1.3.7 Surrounding medium,
applicability of this precision statement to that particular
14.1.3.8 Test temperature,
material. Refer to 5.4-5.8 and 6.1.6.
14.1.3.9 Description of electrodes,
14.1.3.10 Method of voltage application,
14.1.3.11 If specified, the failure criterion of the current-
sensing element, and 8
The complete report is available from ASTM International. Request RR:D09-
14.1.3.12 Date of test. 1026.

D 149 – 97a (2004)
15.5 Use special techniques and equipment for materials 16. Keywords
having a thickness of 0.001 in. or less.The electrodes must not
16.1 breakdown; breakdown voltage; calibration; criteria of
damage the specimen upon contact. Accuray determine the
breakdown; dielectric breakdown voltage; dielectric failure;
voltage at breakdown.
dielectric strength; electrodes; flashover; power frequency;
15.6 Bias—This test method does not determine the intrin-
process-control testing; proof testing; quality-control testing;
sic dielectric strength. The test values are dependent upon
rapid rise; research testing; sampling; slow rate-of-rise; step-
specimen geometry, electrodes, and other variable factors, in
by-step; surrounding medium; voltage withstand
addition to the properties of the sample, so that it is not
possible to make a statement of bias.
APPENDIXES
(Nonmandatory Information)
X1. SIGNIFICANCE OF THE DIELECTRIC STRENGTH TEST
X1.1 Introduction directly between the electrodes. Weak spots within the volume
under stress sometimes determine the test results.
X1.1.1 A brief review of three postulated mechanisms of
breakdown, namely: (1) the discharge or corona mechanism,
X1.4 Influence of Test and Specimen Conditions
(2)thethermalmechanism,and(3)theintrinsicmechanism,as
well as a discussion of the principal factors affecting tests on
X1.4.1 Electrodes— In general, the breakdown voltage will
practical dielectrics, are given here to aid in interpreting the
tend to decrease with increasing electrode area, this area effect
data. The breakdown mechanisms usually operate in combina-
being more pronounced with thin test specimens. Test results
tionratherthansingly.Thefollowingdiscussionappliesonlyto
are also affected by the electrode geometry. Results may be
solid and semisolid materials.
affected also by the material from which the electrodes are
constructed, since the thermal and discharge mechanism may
X1.2 Postulated Mechanisms of Dielectric Breakdown
be influenced by the thermal conductivity and the work
X1.2.1 Breakdown Caused by Electrical Discharges—In function, respectively, of the electrode material. Generally
many tests on commercial materials, breakdown is caused by speaking, the effect of the electrode material is difficult to
electrical discharges, which produce high local fields. With
establish because of the scatter of experimental data.
solid materials the discharges usually occur in the surrounding
X1.4.2 Specimen Thickness—The dielectric strength of
medium, thus increasing the test area and producing failure at
solid commercial electrical insulating materials is greatly
or beyond the electrode edge. Discharges may occur in any
dependentuponthespecimenthickness.Experiencehasshown
internal voids or bubbles that are present or may develop.
that for solid and semi-solid materials, the dielectric strength
These may cause local erosion or chemical decomposition.
varies inversely as a fractional power of the specimen thick-
These processes may continue until a complete failure path is
ness, and there is a substantial amount of evidence that for
formed between the electrodes.
relatively homogeneous solids, the dielectric strength varies
X1.2.2 Thermal Breakdown—Cumulative heating develops
approximay as the reciprocal of the square root of the
inlocalpathswithinmanymaterialswhentheyaresubjectedto
thickness. In the case of solids that can be melted and poured
high electric field intensities, causing dielectric and ionic
to solidify between fixed electrodes, the effect of electrode
conduction losses which generate heat more rapidly than can
separationislessclearlydefined.Sincetheelectrodeseparation
be dissipated. Breakdown may then occur because of thermal
can be fixed at will in such cases, it is customary to perform
instability of the material.
dielectricstrengthtestsonliquidsandusuallyonfusiblesolids,
X1.2.3 Intrinsic Breakdown—If electric discharges or ther-
with electrodes having a standardized fixed spacing. Since the
mal instability do not cause failure, breakdown will still occur
when the field intensity becomes sufficient to accelerate elec- dielectric strength is so dependent upon thickness it is mean-
trons through the material. This critical field intensity is called ingless to report dielectric strength data for a material without
the intrinsic dielectric strength. It cannot be determined by this stating the thickness of the test specimens used.
test method, although the mechanism itself may be involved. X1.4.3 Temperature—The temperature of the test specimen
and its surrounding medium influence the dielectric strength,
X1.3 Nature of Electrical Insulating Materials although for most materials small variations of ambient tem-
X1.3.1 Solid commercial electrical insulating materials are perature may have a negligible effect. In general, the dielectric
generally nonhomogeneous and may contain dielectric defects strength will decrease with increasing temperatures, but the
of various kinds. Dielectric breakdown often occurs in an area extent to which this is true depends upon the material under
of the test specimen other than that where the field intensity is test. When it is known that a material will be required to
greatest and sometimes in an area remote from the material function at other than normal room temperature, it is essential

D 149 – 97a (2004)
that the dielectric strength-temperature relationship for the properties are usually such that edge breakdown will generally
material be determined over the range of expected operating occur if the electric strength, E , approaches the value given
s
temperatures. by:
X1.4.4 Time—Test results will be influenced by the rate of
4.2 63
E kV/mm (X1.4)
voltage application. In general, the breakdown voltage will s 5 Sts 1e8sD
tend to increase with increasing rate of voltage application.
In cases of large thickness of specimen and low permittivity
This is to be expected because the thermal breakdown mecha-
of specimen, the term containing t becomes relatively insig-
s
nismistime-dependentandthedischargemechanismisusually
nificant and the product of permittivity and electric strength is
time-dependent, although in some cases the latter mechanism 10
approximay a constant. Whitehead also mentions (p. 261)
may cause rapid failure by producing critically high local field
that the use of moist semiconducting oil can affect an appre-
intensitives.
ciablereductioninedgedischarges.Unlessthebreakdownpath
X1.4.5 Wave Form—In general, the dielectric strength is
between the electrodes is solely within the solid, results in one
influenced by the wave form of the applied voltage.Within the
medium cannot be compared with those in a different medium.
limitsspecifiedinthismethodtheinfluenceofwaveformisnot
It should also be noted that if the solid is porous or capable of
significant.
being permeated by the immersion medium, the breakdown
X1.4.6 Frequency—The dielectric strength is not signifi-
strength of the solid is directly affected by the electrical
cantly influenced by frequency variations within the range of
properties of immersion medium.
commercial power frequencies provided for in this method.
X1.4.8 Relative Humidity—The relative humidity influ-
However, inferences concerning dielectric strength behavior at
ences the dielectric strength to the extent that moisture ab-
other than commercial power frequencies (50 to 60 Hz) must
sorbed by, or on the surface of, the material under test affects
not be made from results obtained by this method.
the dielectric loss and surface conductivity. Hence, its impor-
X1.4.7 Surrounding Medium—Solid insulating materials
tance will depend to a large extent upon the nature of the
havingahighbreakdownvoltageareusuallytestedbyimmers-
material being tested. However, even materials that absorb
ing the test specimens in a liquid dielectric such as transformer
little or no moisture may be affected because of greatly
oil, silicone oil, or chlorofluorocarbons, in order to minimize
increased chemical effects of discharge in the presence of
theeffectsofsurfacedischargespriortobreakdown.Ithasbeen
9 moisture. Except in cases where the effect of exposure on
shownbyS.Whitehead thatinordertoavoiddischargesinthe
dielectric strength is being investigated, it is customary to
surrounding medium prior to reaching the breakdown voltage
control or limit the relative humidity effects by standard
of the solid test specimen, in alternating voltage tests it is
conditioning procedures.
necessary that
2 2 X1.5 Evaluation
E D 1 E D 1 (X1.1)
me8m = m 1 . se8s = s 1
X1.5.1 A fundamental requirement of the insulation in
If the liquid immersion medium is a low loss material, the electrical apparatus is that it withstand the voltage imposed on
criterion simplifies to it in service. Therefore there is a great need for a test to
evaluatetheperformanceofparticularmaterialsathighvoltage
2
E E D 1 (X1.2)
me8m . se8s = s 1 stress. The dielectric breakdown voltage test represents a
and if the liquid immersion medium is a semiconducting convenient preliminary test to determine whether a material
material the criterion becomes merits further consideration, but it falls short of a complete
evaluation in two important respects. First, the condition of a
E 2 f E (X1.3)
msm . p er e0 s
material as installed in apparatus is much different from its
condition in this test, particularly with regard to the configu-
where: ration of the electric field and the area of material exposed to
E = electric strength,
it, corona, mechanical stress, ambient medium, and association
f = frequency,
with other materials. Second, in service there are deteriorating
e and e8 = permittivity,
influences, heat, mechanical stress, corona and its products,
D = dissipation factor, and
contaminants, and so forth, which may reduce the breakdown
s = conductivity (S/m).
voltage far below its value as originally installed. Some of
Subscripts:
these effects can be incorporated in laboratory tests, and a
m refers to immersion medium,
better estimate of the material will result, but the final
r refers to relative,
consideration must always be that of the performance of the
0 refers to free space,
-12 material in actual service.
(e0 =8.854310 F/m) and
X1.5.2 The dielectric breakdown test may be used as a
s refers to solid dielectric.
material inspection or quality control test, as a means of
X1.4.7.1 Whitehead points out that it is therefore desirable
to increase E and ,or , if surface discharges are to be
m em sm
avoided. Transformer oil is usually specified and its dielectric 10
Starr, R. W., “Dielectric Materials Ionization Study” Interim Engineering,
Report No. 5, Index No ME-111273.Available from Naval Sea Systems Command
Technical Library, Code SEA 09B 312, National Center 3, Washington, DC
9
Whitehead, S., Dielectric Breakdown of Solids, Oxford University Press, 1951. 20362-5101.

D 149 – 97a (2004)
inferring other conditions such as variability, or to indicate the test it is the relative value of the breakdown voltage that is
deteriorating processes such as thermal aging. In these uses of important rather than the absolute value.
X2. STANDARDS REFERRING TO TEST METHOD D149
X2.1 Introduction X2.1.2 In some standards which specify that the dielectric
strength or the breakdown voltage is to be determined in
X2.1.1 The listing of documents in this appendix provides
reference to a broad range ofASTM standards concerned with accordance with Test Method D 149, the manner in which the
determination of dielectric strength at power frequencies or reference is made to this test method is not compley in
with elements of test equipment or elements of procedural conformance with the requirements of 5.5. Do not use another
details used to determine this property. While every effort has document, including those listed in this appendix, as a model
been made to include as many as possible of the standards forreferencetothistestmethodunlessthereisconformitywith
referring to Test Method D 149, the list may not be complete, 5.5.
and standards written or revised after publication of this
appendix are not included.

華洋試驗(yàn)機(jī)產(chǎn)品網(wǎng):http://www.huayangyq.com

 

華洋儀器展覽網(wǎng):http://www.huayangyq.net

 

華洋儀器化工網(wǎng):http://www.fivetb.com

 

華洋儀器百業(yè)網(wǎng):http://www.jlhyyq.cn

 

 

国产亚洲精品久久久久久久久动漫| 欧美一区二区精品人妻| 美女性黄久久久国产精品| 欧美日韩精品一区二区中文字幕| 久久99精品久久久久久秒播| 亚洲综合精品一区二区三区| 国产精品亚洲综合久久婷婷| 久久产精品一区二区三区日韩| 国产精品成av人在线观看片| 国产精欧美一区二区三区久久| 日韩欧美亚洲国产午夜在线| 亚洲第一欧美一区二区精品| 日韩成人精品在线播放| 国产精品中文字幕在线观看| 日韩av在线不卡免费看| 欧美日韩精品系列一区二区| 一区二区三区在线观看日韩| 蜜桃视频一区二区三区在线观看| 欧美日韩一区二区午夜福利 | 国产午夜精品理论片免费视频| 九九热久久这里有免费精品 | 日韩和欧美的一区二区三区| 97影院理论片在线观看| 日韩人妻精品一区二区三区在线| 亚洲人妻一区二区三区av| 精品人妻潮喷久久久又裸又黄 | 欧洲精品一区二区三区中文字幕| 午夜亚洲精品久久久久久小说| 蜜桃av一区二区三区在线观看| 色播五月麻豆激情综合网| 国产一区二区精品久久呦| 亚洲国产天堂久久综合网| 欧美精品一区91久久久| 最新中文字幕乱码不卡一区| 乱色老熟妇一区二区三区| 亚洲黄色av一区二区在线观看| 日本大香伊一区二区三区| 久久精品国产av一区二区三区| 一区二区国产精品三区在线电影 | 日本一区二区三区免费不卡视频| 国产精品激情视频一区二区三区| 国产精品白丝av嫩草影院 | 91精品国产综合久久久久久蜜月| 国产精品女人高潮毛片视频| 亚洲日本中文字幕高清在线| 亚洲国产天堂久久综合网| 九九在线免费观看电影网| 国产69精品久久777的观感| 欧美国产精品久久久久久| 国产精品亚洲一区二区久久| 精品国产精品网麻豆系列| 精品一区二区免费视频蜜桃| 免费无遮挡午夜视频网站 | 成人黄色小视频下载网站| 爱丝官网一区二区午夜福利视频| 日本一区二区三区免费不卡视频| 99re热在线播放视频| 欧美日韩精品一区二区不卡| 亚洲精品乱码国产精品乱码| 欧美日韩久久久一区二区三区| 亚洲十八禁在线免费观看| 小说区图片区视频区亚洲| 开心五月激情五月婷婷综合网| 国产精品性色一区二区三区在线蜜 | 18禁黄网站禁片免费观| 91色综合久久夜色精品国产| 欧美日韩一区二区三区精品视频| 亚洲欧洲日韩国产免费| 丝袜人妻电影一区二区三区| 丰满少妇人妻视频一区二区三区| 99亚洲综合精品久久精品国产久| 97视频在线观看男人的天堂 | 91色老久久精品偷偷蜜臀九色| 中文字幕女同性恋一区二区三区 | 中文字幕十乱码中文字幕| 欧美一区二区三区免费观看视频| 日本不卡免费一区二区三区| 日本精品免费偷拍小视频网 | 亚洲激情五月之综合婷婷 | 国产爽爽爽爽爽爽爽爽爽| 欧美日韩国产中文一区二区| 久久精品一区二区中文字幕 | 欧美成人午夜一区二区三区| 欧美一区两区三区在线观看| 高清不卡一卡二卡区在线| 亚洲综合精品一区二区三区| 欧美制服丝袜国产日韩一区| 欧美日韩免费电影一区二区| 国产二区三区在线观看视频| 中文字幕日韩欧美第一页| 欧美精品高清在线一区二区三区| 在线观看麻豆91精品国产| 精品国产精品久久一区免费式| 欧美日韩激情在线看片亚洲| 日韩电影中文字幕在线观看| 久久91精品国产丰满美女| 欧美与黑人午夜猛交久久| 午夜天堂av天堂久久久| 高清亚洲中文字幕一区二区| 男人av天堂男人的网站| 欧美日韩视频在线一区二区三区| 激情综合网五月六月丁香国产| 一区二区亚洲欧美在线观看| 日本1区2区3区4区国色| 亚洲天堂2020地址免费观看| 国产精品国产三级农村妇女| 婷婷丁香蜜桃激情五月天| 欧美日韩二区三区在线观看| 日韩欧美中文字幕在线四区| 久久综合九色综合88中文字幕有码| 国产综合av在线免费观看| 国产一级二级三级aa视频| 精品一区二区三区视频男人吃奶 | 国产精品午夜福利影院在线观看 | 日本一区二区三区免费不卡视频| 国产精品亚洲av蜜桃三区| 日本一区二区在线视频观看| 中文字幕乱码亚洲无线码二区 | 亚洲av日韩高清在线观看 | 人妻精品未满十八少妇精品| 手机在线观看网址你懂的| 欧美成人午夜电影在线观看 | 国产伦精品99久久自偷国产| 国产欧美一区二区在线观看 | 乱人伦人妻中文字幕禁忌1| 97精品久久久中文字幕| 日韩av高清中文字幕在线观看 | 国产偷国产偷亚洲高清日韩| 黄色三级av在线免费播放| 久久精品国产热久久精品国产亚洲 | 国产精品久久久久久一区| 国产精品日韩av一区二区三区| 亚洲综合色婷婷在线影院p厂| 亚洲午夜一级艳片欧美精品| 韩国三级电影善良的嫂子| 一本不卡欧美一区二区三区| 欧美高清亚洲一区二区在线观看| 91亚洲欧美综合高清在线 | 一本之道av免费在线观看| 都市激情校园春色亚洲成人| 伊人婷婷涩六月丁香七月| 红桃视频污在线观看视频在线观看| 欧美一区2区三区4区网站 | 欧美日韩综合中文字幕一区二区 | 亚洲午夜一级艳片欧美精品| 国产欧美一区二区三区网站| 日韩人妻成人福利电影一区二区 | 亚洲av资源网站在线观看| 亚洲欧洲国产欧美一区精品| 日韩av毛片高清免费在线观看| 欧美韩一区二区三区电影免费看| 国产在线观看精品区一区| 日韩国产一区二区三区av| 亚洲美女日韩精品色图在线视频| 久碰久摸久看好男人视频| 今天有什么电影可以看在电影院| 日韩久久精品视频一二三区| 国语自产拍在线观看国产精品| 亚洲精品国产综合一线久久| 久久av一区二区三区影视| 亚洲精品九九九人妻av| 2022国产精品黄色片| 欧美激情一区二区三区四区| 天天爱天天做久久狼狼黑人| 亚洲情色av在线免费观看| 色天天综合色天天天天看大片| 日韩欧美国产在线看免费 | 一区二区三区在线视频欧美| 精品人妻少妇嫩草av码专区| 国产欧美一区二区三区不卡高清| 国产精品福利网站在线观看| 在线精品日韩亚洲欧一二三区| 亚洲国产成人久久综合小说| 国产一区二区在线播放黄色高清 | 免费欧美一区二区三区四区| 欧美久久久久久久一区二区三区| 日本一区二区三区不卡视频在线 | 国产亚洲欧美一区二区精 | 欧美国产精品久久久免费| 久久亚洲国产精品五月天 | 蜜臀av一区二区国产在线| 亚洲综合色就色在线观看| 亚洲精品色婷婷在线观看| 麻豆一区二区国产三区亚洲人 | 欧美日韩高清在线观看一区二区| 欧美亚洲国产日韩在线观看| 国产一区二区三区 视频| 国产三级在线观看一区二区| 亚洲区激情区图片小说区| 国产三级黄色的在线观看| 99久久精品免费看国产一区| 亚洲综合精品一区二区三区| 精品美女视频一区二区三区 | 一级国产麻豆片在线观看 | 怡红院蕉国产免费现现视频| 成人美女黄网站色大色费全看下载| 国产亚洲综合一区二区在线观看| 久久麻豆精亚洲av品国产精品| 亚洲欧洲精品一区二区三区不卡| 欧美成人高清精品一区二区| 亚洲午夜一级艳片欧美精品 | 成片免费视频观看大全一起草 | 欧美大陆日韩一区二区三区 | 亚洲国产av一区二区香蕉精品| 91精品国产薄丝高跟在线播| 久久艹精彩视频免费观看| 国产精品网红尤物福利在线| 国产一区二区三区精品成人爱| 好吊色欧美一区二区三区顽频 | 中文字幕免费av中文字幕免费| 99久久精品氩 99久久久| 亚洲一区二区在线观看的av| 同房后下面流黄黄的液体| 国产黄a三级三级三级av在线看| 国产女同av一区二区三区| 亚洲欧美日韩加勒比在线| 国产欧美日韩精品久久久| 亚洲欧美日韩加勒比在线| 国产精品清纯白嫩美女s| 国产综合欧美专区一区二区三区| 97色伦在色在线播放免费| 国产欧美日韩综合二区三区| 精品少妇久久一区二区三区| 综合国产精品久久久久久久| 欧美日韩国产精品系列区 | 国产激情久久久久久熟女| 日韩在线观看中文字幕一区二区 | 国产精品羞羞答答色哟哟| 蜜桃av一区二区三区在线观看| 亚洲欧美日本在线视频观看| 欧美岛国精品综合一区二区久久| 亚洲精品乱码久久久久久小说 | 国产69精品久久777的观感| 亚洲情色av在线免费观看| 午夜天堂精品久久久久91色爱 | 五月婷婷啪啪啪综合视频| 久久精品国产一区二区涩涩| 国产大学生自拍视频在线 | 久久久国产综合av天堂| 日本一区二区三区人工换脸| 97影院成人午夜电影在线观看 | 欧美一区二区在线观看不卡 | 91精品国产91久久福利| 天天爱天天做久久狼狼黑人| 亚洲一区二区三区四区五区六| 欧美日韩亚洲中文字幕二区网址| 中文字幕人妻系列东京热| 免费久久久久久中文字幕| 亚洲区激情区图片小说区| 国产精品一区二区三区色噜噜| 毛片毛片视频毛片视频的毛片| 国产精品中文字幕在线观看| 欧美日韩精品系列一区二区| 18禁超污无遮挡网站免费| 国产精品久久久久福利电影| 国产欧美精品区一区二区三| 日韩精品成人av免费看| 婷婷丁香蜜桃激情五月天| 欧美激情国产日韩视频一区| 久久久91精品国产一区二区精品| 精品人妻久久久久久888不卡 | 91亚洲欧美精品一区二区三区| 人妻一本久道久久综合久久鬼色| 91精品蜜臀在线一区尤物| 一本色道久久99精品综合| 我吸着老师的白嫩大乳漫画| 国产熟女白浆精品视频2| 亚洲国产成人激情视频在线 | 亚洲精品乱码97久久久久久 | 国产91精品露脸国语对白| 欧美日韩中文字幕午夜在线| 日韩久久精品视频一二三区| 大香蕉再在线大香蕉再在线| 99久在线国内在线播放免费观看| 美女一区二区三区亚洲麻豆 | 欧美日韩综合中文字幕一区二区 | 后入亚洲美女一区二区三区| 精品人妻av综合一区二区| 亚洲国产精品久久久久性色| 美女成人亚洲黄色福利视频| 国产亚洲一区二区三区在线播放| 亚洲av男人的天堂麻豆| 欧美日韩国产精品系列区| 欧美黄色男人日女的阴道| 日韩一区日韩二区日韩三区 | 亚洲人五月天久久综合九九| 欧美成人精品一区二区综合免费| 国产精品综合视频一区二区三区| 五月天最新网址精品综合| 日本加勒比中文字幕在线观看| 欧美成人高清视频在线播放 | 亚洲欧美日本在线视频观看| 精品久久国产老人久久综合| 国产熟女白浆精品视频2| 亚洲av中的一区二区三区四区| 国内精品自线一区二区三区视频| 精品一区二区三区的天堂| 日本高清二区视频久二区| 日本黄色亚洲成人日韩欧美| 欧美日韩精品一区二区中文字幕 | av乱色熟女一区二区三区| 国产精品福利在线播放| 亚洲中文字幕中文字幕中文字幕 | 久久一区二区三区欧美亚洲| 国产肉丝精品91一二区| 国产av剧情片一二三区| 日本a级一区二区资源网站| 国产av一区二区色呦呦| 蜜臀av免费一区二区三区观看| 日本免费一区二区三区视频在线 | 999中文视频在线观看 | 亚洲精品国产久久久久久| 蜜臀久久久久精品一区二区三区| 五月婷婷网在线视频观看| 欧美综合在线观看一区二区| av网站大全在线免费观看| 美女一区二区三区亚洲麻豆 | 久久精品国产一区二区涩涩 | 国产理论一区二区三区久久| 欧美猛少妇色xxxx久久久久久| 欧美日韩国产精品系列区| 亚洲av日韩av全部精品| 在线观看精品国产亚洲av| 精品一区二区三区在线网站| 手机免费在线观看你懂得| 国产综合av在线免费观看| 日韩精品一区二区三区射精| 欧美日本国产一区二区三区| 欧美成人午夜一区二区三区| 欧美日韩精品系列一区二区| 黄色三级av在线免费播放| 日本人妻久久久久久久久| 顶级黄片av一区二区三区精品| 亚洲精品一区二区三区免| 欧美亚洲国产日韩品久久| 亚洲中文字幕三级电影| 国产伦精品99久久自偷国产| 玩弄人妻少妇精品视频网站| 人人妻人人澡人人爽人人精品不卡| 91精品国产综合久久久久久蜜月 | 久久久国产综合av天堂| 高清精品一区二区三区伊人| 色婷婷一区二区三区四区成人| 国产精品视频一区二区三区首页| 手机在线不卡二区中文字幕| 亚洲毛片av不卡一区二区三区| 18禁黄网站禁片免费观| 国产女主播一区二区三区四区 | 欧美欧美欧美欧美在线观看| 久久久一区二区亚洲三区| 青青草av一区二区三区| 色综合天天综合网天天狠天天 | 日本a级一区二区资源网站| 日本av电影一区二区在线观看| 国产亚洲精品福利视频| 风流老熟女一区二区三区l| 97久久伊人嫩草一区二区三区| 国产99视频精品免费视频美女| 亚洲av午夜精品久久久| 亚洲欧美日韩人成在线播放| 国产精品一区在线观看网址| 在线播放亚洲欧美日韩第一区| 欧美一区二区三区四区乱码小说| 午夜激情丝袜美腿诱惑影院| 高清日韩一区二区三区视频| 日韩欧美国产中文字幕综合| 国产一区二区三区网站视频 | 亚洲色图一区二区三区视频| 高清不卡一卡二卡区在线| 成人午夜精品久久久久久| 国产欧美日韩在线一区二区| 人人妻人人澡人人爽人人精品免费 | 69热视频在线观看免费| 国产精品久久久久大屁股精品性色| 亚洲伦理中文字幕一区二区| 适合一家人看的国产电影 | 国产91色综合久久免费分享| 最新中文字幕乱码不卡一区| 国产在线精品亚洲第1页| 美女爱爱图片一区二区三区 | 国产日韩欧美视频在线播放| 亚洲精品中文字幕无乱码麻豆| 国产a级精品一区二区免费看视频| 中文字幕日韩高清在线视频| 美女洗澡私拍一区二区三区| 欧美亚洲综合另类精品国产色拍图| 一区二区三区日本韩国欧美| 国产精品久久久久久成人| 亚洲国产色一区二区三区| 欧美日韩国产中文在线一区二区 | 亚洲精品欧美白浆久久久| 日本一区二区免费在线视频| 日韩 中文字幕高清最新| 99久久一区二区三区免费| 亚洲精品中国一区二区久久| 99久久精品日本一区二区免费 | 人妻av在线一区二区三区| 久久精品一区二区66| 成人av一区二区三区免费在线| 日本东京热视频在线观看| 5252欧美在线男人的天堂| 国产一级二级三级在线观看视频 | 欧美韩一区二区三区电影免费看| 日韩精品 中文字幕 有码系列| 欧美一区二区三区激情免费| 五月开心婷婷六月丁香婷| 日韩av免费高清在线观看| 国产精品大屁股白浆一区二区| 国产一区你懂的在线观看| 久久久久夜色国产精品亚洲av| 精品人妻午夜一区二区三区四区 | 国产精品亚洲美女av网站| 国产亚洲精品久久久久久久久动漫 | 国产偷国产偷亚洲高清日韩| 国产自产一区二区三区视频| 国产精品夜夜春夜夜爽久久小 | 精品人妻av综合一区二区| 久久综合色最新久久综合色| 国产精品国产三级国产剧情| 日韩欧美亚洲国产精品字幕久久久| 亚洲精品我不卡中文字幕乱码| 成人黄色在线免费观看网站| 欧美亚洲国产日韩品久久| 国产精品色午夜免费视频| 日韩特级黄色大片在线观看| 久久精品国产亚洲av日韩| 亚洲视频国产视频自拍视频| 国产av一区二区色呦呦| 78色精品一区二区三区| 久热热久这里只有精品国产| 青青草原在线视频观看精品| 999中文视频在线观看 | 一本大道综合伊人精品热热| 日本无限不卡1区2区3区| 精品人妻午夜一区二区三区四区| 精品国产精品久久一区免费式 | 欧美日韩亚洲中文字幕二区网址| 亚州国产欧美一区二区三区| 99久久精品日本一区二区免费| 亚洲欧美日韩在线精品2区| 91久久国产精品久久91| 欧美日韩一区二区三区福利| av乱色熟女一区二区三区| 欧美一区二区三区亚洲一区| 久久精品三级一区二区av| 久超在线精品av一区二区三区| 91精品国产色综合久久久蜜香臀| 美女成人亚洲黄色福利视频| 欧美日韩精品视频一区二区三区四区| 亚洲欧美一区二区三区爽爽爽| 国产欧美日韩一区二区三区精品| 欧美日韩精品一区二区在线| 人人妻人人澡人人爽人人精品免费 | 亚洲欧美人成综合在线另| 久久99久久久国产精品| 欧美日韩国产精品系列区 | 黄色影院在线观看一区二区| 免费欧美一区二区三区四区| 午夜精品内射少妇视频在线| 久久精品噜噜噜成人av| 亚洲精品九九九人妻av| 高清不卡一卡二卡区在线| 国产精品性色一区二区三区在线蜜| 日本动漫人妻作爱大尺度| 国产精品一区二区剧情熟女| 亚洲av激情电影在线观看| 婷婷99精品国产97久久综合| 国产a级精品一区二区免费看视频| 精品国产一区二区色老头| 亚洲精品乱码久久久久久电影| 日韩精品自拍偷拍一区二区| 久久国产精品男人的天堂av| 久久久一区二区亚洲三区| 日韩国产亚洲一区二区三区 | 亚洲成av人黄网站在线观看| av网站大全在线免费观看| 99热这里只有精品2023| 日韩欧美亚洲国产精品字幕久久久| 国产精品性色一区二区三区在线蜜 | 日本大香伊一区二区三区| 精品一区二区免费视频蜜桃| 亚洲欧美日韩综合视频免费看| 午夜视频在线观看精品200| 国产精品久久久亚洲综合天堂| 亚洲黄色av一区二区在线观看| 国产大学生自拍视频在线| 亚洲精品乱码国产精品乱码| 激情综合网五月激情俺也去 | 久久久熟妇五十路二区一区 | 蜜桃亚洲精品一区二区三区| 一区二区三区亚洲欧美日韩人色| 91超碰极品人人人人成人| 亚洲区欧美区综合区自拍区| 欧美极品一区二区三区欧美大片| 色噜噜色狠狠狠狠狠综合色一 | 国产精品97久久久久久毛片| 亚洲午夜福利国产门事件| 欧美三级在线观看不卡1区| 日本动漫人妻作爱大尺度| 激情久久av区二区av| 亚洲精品国产久久久久久| 国语自产拍在线观看国产精品| 国产精品一区二区 日韩 欧美| 在线看的中文av网址导航| 日韩和欧美的一区二区三区| 亚洲欧美国产日韩中文丝袜 | 巨乳人妻的诱惑电影日本| 日韩欧美国产精品一二三区免费在线| 国产精品日韩精品中文字幕| 久久偷拍国内亚洲青青草| 日韩欧美一区二区三区中出内射 | 亚洲精品国产成人综合久久久小说| av免费精品一区二区三区蜜桃 | 日韩精品成人av免费看| 19久久久国产一区二区| 亚洲第一欧美一区二区精品| 国产精品视频一区二区三区首页| 小说区图片区偷拍区视频| 精品国产一区二区色老头 | 黄色av网址网站能看的| 99精品这里只有免费精品| 亚洲电影天堂之男人的服务天堂| 今天有什么电影可以看在电影院 | 在线播放亚洲欧美日韩第一区| 色爱区综合激情五月综合激情 | 蜜臀欧美精品一区二区免费看| 亚洲一区二区三区欧美精品| 亚洲国产成人久久综合小说| 精品人妻av综合一区二区| 精品精品国产一区二区性色av| 日韩亚洲高清一区二区三区| 亚洲欧美国产乱子精品观| 欧美国产日本一区二区三区| 国产一区二区三区水蜜桃| 狠狠人妻久久久久久综合密桃| 精品人妻少妇系列女友系列 | 欧美日一区二区三区精品| 色婷婷在线免费观看视频 | 日韩av毛片高清免费在线观看| 日本电影777久久久| 婷婷激情综合亚洲五月色| 一区二区三区有码在线播放| 欧美天堂一区一区二三区| 亚洲无人区乱码中文字幕| 国产精品69堂凸凹视频| 18禁超污无遮挡网站免费| 欧美一区二区三区综合色| 国产乱人精品视频69av | 手机在线不卡二区中文字幕| 久久99久久久久久久久| 亚洲国产成人激情视频在线| 99久在线国内在线播放免费观看| 欧美极品一区二区三区欧美大片| 美女成人亚洲黄色福利视频| 中文字幕黄色综合网免费| 最新中文字幕乱码不卡一区| 一区二区三区手机在线播放| 天堂资源网一区二区三区 | 国产精品午夜福利影院在线观看| 视频区 图片区 小说区免费| 日韩a人毛片精品无人区乱码 | 欧美午夜精品一区二区三| 激情综合网五月激情俺也去| 国产伦精品一区二区三区2 | 国产精品自产在线观看一| 极品少妇被弄得99精品欧美| 国产成人凹凸视频在线观看不卡| 欧美日韩一码二码三区四区| 亚洲一区二区三区自拍偷拍| 999中文视频在线观看| 亚洲春色另类小说校园| 蜜臀av一区二区国产在线| 99久久精品氩 99久久久| 色狠狠一区二区三区蜜桃av| 亚洲精品一区二区三区四区av| 亚洲欧美国产日韩中文丝袜 | 伊人影院在线免费观看电影| 欧美日韩免费电影一区二区 | 妖精视频一区二区三区四区| 人妻少妇精品一区二区三区视频| 99re热这里只有精品视频| 成人黄网站色视免费大全| 亚洲国产欧美亚洲国产欧美| 日本1区2区3区4区国色| 亚洲午夜福利国产门事件| 日本中文字幕视频在线观看| 亚洲一区二区三区四区免费看| 国产无人区码一码二码三码区别| 久久麻豆精亚洲av品国产精品 | 欧美岛国精品综合一区二区久久| 欧美加勒比一区二区三区| 国产精品一区二区剧情熟女 | 亚洲国产精品有码一区二区 | 国产精品夜夜春夜夜爽久久小 | 在线看片日本免费一区二区| 国产欧美一区二区三区精剧| 国产流白浆一区二区三区免费视频 | 日韩精品一区二区三区四区不卡| 亚洲精品一区二区三区麻豆| 国产午夜精品一区二区三区不卡| 欧美国产精品久久久久久| 国产精品区一区二区国模| 精品欧美一区二区三区四区| 欧美日韩激情在线看片亚洲| 欧美国产一区二区三区在线播放 | 亚洲国产精品有码一区二区 | 国产亚洲欧洲av一区二区三区| 污污污的网站在线免费看| 成人黄页网站在线观看视频| 手机在线一区二区三区观看 | 成人特黄特色毛片免费看| 欧美二区三区久久久精品| 激情久久av区二区av| 国产视频日韩视频欧美视频| 亚洲av成人一区二区三区在线| 99re热在线播放视频| 亚洲精品一区二区三区麻豆| 国产欧美另类久久久精品不卡| 欧美日韩精品综合一区二区| 91人妻人人澡人人爽从精品 | 国产精品久久久亚洲天堂| 国产看片色网站亚洲av| 国产精品亚洲综合久久婷婷| 亚洲av午夜精品久久久| 国产精品久久永久免费看| 欧美一区久久人妻中文字幕| 日韩夫妻精品熟妇人妻一区| 国产精品91一区二区三区四区| 亚洲国产色一区二区三区| 亚洲一区二区三区四区免费看| 欧美日韩中文字幕一区不卡| 综合自拍亚洲综合图区欧美| 69堂国产成人精品视频| 午夜精品久久久久久久2023 | 国产日韩欧美视频在线播放| 日本人妻与家公的伦理片| 欧美精品一区二区三区日韩 | 加勒比久久伊人欧美国产| 日韩欧美中文字幕在线四区| 国内一区二区三区黄色片| 国产流白浆一区二区三区免费视频| 中文字幕一本一道在线| 51国产午夜精品免费视频| 农村老女人久久毛片免费看| 亚洲产国偷v产偷v自拍一区 | 欧美一区二区三区免费观看视频| 性色av一区二区三区狠狠| 国产日本欧美在线一区二区| 红桃视频污在线观看视频在线观看| 美女爱爱图片一区二区三区 | 欧美激情一区二区三区啪啪啪| 久草片免费福利资源视频总站| 欧美一区日韩二区日韩二区| 中文字幕欧美激情一区二区| 国产精品色午夜免费视频| 国产综合久久精品东京热| 亚洲国产av一区二区三区| 99视热频这里只有精品| 天天操天天干天天干天天操| 欧美日韩精品一本二本在线| 亚洲国产精品久久久二区| 欧美三级韩国三级日本三斤| 一区二区亚洲欧美在线观看| 国产欧美一区二区图片专区| 国产精品日韩精品中文字幕| 亚洲免费中文字幕一区二区三区| 91精品国产薄丝高跟在线播| 亚洲av日韩av在线播放| 午夜天堂精品久久久久91色爱| 国产免费av一区二区三区| 欧美日本国产一区二区三区| 在线观看免费视频伊人网| 精品国产网址免费在线观看 | 国产电影一区二区三区在线观看 | 91香蕉视频在线观看污污污| 日本a级一区二区资源网站 | 亚洲国产av一区二区三区| 亚洲黄色av一区二区在线观看| 国产电影一区二区三区在线观看| 亚洲美女日韩精品色图在线视频| 久久av不卡人妻一区二区三区| 韩国三级电影善良的嫂子| 国产在线精品二区一东京热| 99久久精品免费看国产一区| 欧美国产日本一区二区三区| 92看看午夜福利合集免费观看| 欧美日韩亚洲中文字幕二区网址 | 亚洲av永久精品毛片天堂| 蜜臀国产综合久久第一页| 国产精品一区在线观看网址| 欧美国产一区二区三区在线播放| 适合一家人看的国产电影| 日韩欧美中文字幕无敌色| 久久久91精品国产一区二区精品| 最新中文字幕乱码不卡一区| 91人妻久久久久99精品系列| 国产av剧情精品老熟女| 五月天最新网址精品综合| 欧美精品区一区二区三区| 国产精品一区二区色蜜蜜| 欧美人在线一区二区三区| 亚洲福利欧美日韩午夜一区| 顶级尤物极品女神福利视频| 同房后下面流黄黄的液体 | 欧美一区2区三区4区网站 | 午夜天堂精品久久久久91色爱| 999中文视频在线观看| 日韩免费av区二区电影| 中文字幕精品久久一区二区三区| 色噜噜色狠狠狠狠狠综合色一 | 中文字幕精品一区二区三区老狼| 中文字幕日韩欧美第一页| 国产精品欧美日韩中字一区二区 | 国产寡妇精品久久久久久| 国产91色综合久久免费分享| 精品国产污免费网站入口| 欧美日韩国产中文在线观看| 国产欧美日韩亚洲第一第二页| 日韩亚洲欧美中文字幕在线观看 | 最近日韩一区二区三区四区av| 国产麻豆精品电影在线观看 | 麻豆国产精品专区在线观看| 亚洲国产精品一区二区免费电影| 亚洲欧美一区二区三区爽爽爽 | 日本电影777久久久| 91视在线国内在线播放| 国产乱人精品视频69av | 国产欧美日韩综合二区三区| 中文字幕欧美激情一区二区| 日韩 中文字幕高清最新| 国产精品区一区二区国模| 蜜臀av一区二区国产在线| 久久国产夜色精品鲁鲁99| 国产精品国产三级国av在线观看| 极品美女扒开粉嫩小的漫画| 婷婷99精品国产97久久综合| 久久精品国产av一区二区三区| 精品一区二区三区av在线| 少妇人妻精品一区三区二区 | 亚洲人妻一区二区三区av| 顶级黄片av一区二区三区精品 | 国产中文字幕高清在线观看| 性色av一区二区三区狠狠| 亚洲国产激情免费观看网站| 国产亚洲成人av看黄在线观看| 国产麻豆精品电影在线观看| 一区二区三区视频二男一女| 亚洲国产日韩精品福利一区| 蜜桃av一区二区三区在线观看 | 加勒比久久伊人欧美国产| 日韩 中文字幕高清最新| 吉川爱美一区二区三区视频 | 亚洲欧美日韩加勒比在线| 日本免费中文字幕一区二区久久| 美女洗澡私拍一区二区三区| 午夜福利合集极品精品视频 | 91香蕉视频在线观看污污污 | 亚洲av男人的天堂麻豆| 国产成人亚洲欧美在线二区小说| 午夜精品内射少妇视频在线| 日韩精品人妻午夜一区二区三区| 我露出雪白的奶头给我同桌吃| 国产电影一区二区三区高清 | 欧美不卡一区二区在线视频| 免费特污的视频在线观看亚洲不卡 | 亚洲av日韩av全部精品| 亚洲精品色婷婷在线观看| 国产欧美日韩精品高清二区综合区| 日本一区二区在线视频观看| 日韩亚洲欧美中文字幕在线观看| 国产精品久久精品久久国产| 伊人影院在线免费观看电影| av网站在线免费观看入口| 日韩精品人妻中文字幕有码网址 | 五月婷婷丁香综合中文字幕| 中文字幕加勒比视频二区| 九九热国产这里只有精品| 亚洲av中文有码免费观看| 欧美视频黄页大全在线观看| 国产欧美日韩在线一区二区| 亚洲一区二区三区在线高清| 日韩精品电影综合区亚洲| 99精品免费久久久久久久久| 亚洲成人精品国产一区二区| 日本高清不卡中文字幕免费| 日本高清不卡中文字幕免费| 国产精品久久久久久吹潮| 免费看国产污黄剧情网站| 99精品这里只有免费精品| 亚洲av噜噜在线最新网站| 日韩欧美中文字幕一区二区三区| 久久这里只有精品好国产| 欧美日韩视频在线一区二区三区| 国产一级性片在线观看| 极品少妇被弄得99精品欧美| 97色婷婷成人综合在线观看| 99热这里只有精品2023| 午夜天堂精品久久久久91色爱| 中文字幕精品一区二区三区老狼| 69堂国产成人精品视频| 97久久久综合亚洲久久88| 在线小视频一区二区三区| 日本一区二区不卡免费观看| 中文字幕欧美激情一区二区| 日韩欧美精品视频一区二区三区| 91精品蜜臀在线一区尤物| 熟女av综合一区二区三区| 18禁超污无遮挡网站免费| 国产不卡手机在线观看| 69堂国产成人精品视频| 真实国产老熟女粗口对白| 国产亚洲欧美日韩在线爱豆| 久久国产综合伊人77777| 亚洲精品一区二区三区小说| 精品国产污污在线18禁| 黄色影院在线观看一区二区| 亚洲精品国产久久久久久| 免费亚洲视频在线观看99| 久久99国产精品一区二区三区| 国产女同性恋一区二区三区| 粉嫩av一区二区三区在线播放| 人妻少妇精品一区二区三区视频 | 国产综合av在线免费观看| 亚洲中文字幕精品熟女一区 | 91精品国产91久久久久久| 在线观看特黄片一区二区二区 | 日韩精品毛片一区到三区| 久久精品国产88久久综合张津瑜| 久久久精品久久久精品久久| 日本一区二区三区视频在线播放| 适合一家人看的国产电影| 中文字幕女同性恋一区二区三区| 日韩欧美人妻精品91高清久久| 亚洲精品中文字幕乱码二区| 欧美熟妇一区二区三区仙踪林| 91亚洲欧美综合高清在线 | 高清日韩一区二区三区视频| 精品国产18久久久久二| 成人午夜精品久久久久久| 亚州国产欧美一区二区三区| 亚州国产欧美一区二区三区| 高清日韩一区二区三区视频| 中文字幕精品久久一区二区三区| 久久久精品一区二区三区大全| 亚洲精品涩涩在线观看| 人妻少妇精品一区毛二区| 高清不卡一卡二卡区在线| 日本精品免费偷拍小视频网| 99久久一区二区三区免费| 激情综合网五月六月丁香国产| 国产精品欧美日韩中字一区二区 | 日韩一级黄色片在线观看的| 欧美色老熟妇与性老熟妇| 亚洲天堂精品亚洲天堂精品课程| 哪里可以看日本动作电影| 亚洲无人区乱码中文字幕| 亚洲国产成人久久一区二区三区| 国产日韩欧美视频在线播放| 色噜噜色狠狠狠狠狠综合色一| 欧美色偷偷在线视频播放| 国产精品久久久久福利电影| 久久国产av性色生活片| 国产黄a三级三级三级av在线看 | 亚洲国产av一区二区香蕉精品| av免费精品一区二区三区蜜桃 | 欧美日韩精品一区二区中文字幕| 狠狠狠综合久久久久久久| 国产一区二区日韩欧美在线| 女同性恋精品一二三四区| av网站在线免费观看入口| 一区二区亚洲欧美在线观看| 久久久国产成人精品二区| 日韩av在线亚洲一区二区三区| 亚洲精品我不卡中文字幕乱码| 亚洲欧美日韩综合另类一区| 视频区自拍偷拍一区二区| 国产精品一区二区色蜜蜜| 99亚洲综合精品久久精品国产久| 亚洲欧美日韩欧美中文字幕| 日本中文字幕视频在线观看| 欧美日韩视频在线一区二区三区| 黄色a级三级三级三级的电影| 亚洲天堂精品亚洲天堂精品课程| 一区二区三区手机在线播放| 综合欧美视频一区二区三区| 日本一区二区三区不卡在线看| 熟女av综合一区二区三区| 亚洲国产成人精品毛片九色| 久久久精品一区二区三区大全 | 免费看污片网站在线观看| 国产亚洲欧美一区二区精| 国产精品一区二区 日韩 欧美| 日本高清不卡中文字幕免费 | 欧美日韩二区三区在线观看| 国产黄片a三级久久久久久| 99久久精品免费看国产四区| 青青草亚洲在线一区观看| 国产成人久久久久久久久久久| 秋霞日韩欧美一区二区三区| 中美日韩在线一区黄色大片| 婷婷在线五月天在线视频| 好吊色欧美一区二区三区顽频 | 亚洲国产日韩精品福利一区| 暗交小拗女一区二区三区| 精品国产高清三级在线观看| 美女爱爱图片一区二区三区| 91麻豆精品国产自产在线的 | 亚洲精品乱码久久久久久小说| 欧美一区二区三区中文字幕在线| 国产精品夜夜春夜夜爽久久小| 欧美精品国产一区二区免费| 亚洲美女日韩精品色图在线视频 | 亚洲中文字幕日韩一区二区| 小说区图片区视频区亚洲| 欧美激情一区二区三区精品| 国产欧美一区二区三区网站| 伊人天堂午夜精品福利网| 日韩国产精品综合高清av=| 亚洲一区二区三区四区91| 日本一区二区三区不卡在线看| 清纯唯美亚洲色图在线视频| 成人欧美一区二区三区在线小说| 日韩伦理中文字幕一区二区| 国产大学生吞精在线视频| 久久偷拍国内亚洲青青草| 久久久精品国产亚洲av网麻豆| 99re热在线播放视频| 国产精品极品白嫩在线| 色呦呦免费观看一区二区| 日本a级一区二区在线免费观看 | 欧美一区二区三区激情免费| 日本高清视频在线网站不卡| 国产综合久久久一区二区三区| 尤物精品国产亚洲亚洲av麻豆| 日韩激情视频免费在线观看| 精品一区二区免费视频蜜桃| 亚洲中文字幕日韩一区二区| 国产一区二区av在线播放| 亚洲欧美日韩综合另类一区 | 欧美极品一区二区在线观看| 国产在线精品一区在线观看麻豆 | 国产精品久久精品久久国产| 成人美女黄网站色大色费全看下载 | 日本高清不卡电影一区二区 | 欧美丰满人妻一区二区三区| 国产亚洲精品久久久一区| 日韩在线中文字幕第一页| 国产农村妇女一二三区| 精品国产99久久久成人| 国产欧美一区二区三区不卡高清| 一本不卡欧美一区二区三区 | 99精品国产一区二区三区网站| 极品少妇被弄得99精品欧美| 中文字幕欧美精品人妻一区| 亚洲视频在线观看第一区| 一区二区三级电影在线观看| 日本一区二区在线视频观看| 欧美丰满人妻一区二区三区| 国产精品一区二区三区剧情片| 国产爽爽爽爽爽爽爽爽爽| 国产精品女人高潮毛片视频| av电影在线观看中文字幕哦| 国产免费av一区二区三区| 大香蕉再在线大香蕉再在线| 中文字幕日韩欧美日韩在线| 欧美大陆日韩一区二区三区| 一区二区三区亚洲中文字幕 | 伊人天堂午夜精品福利网| 乱色老熟妇一区二区三区| 中文字幕欧美一区二区三区| 亚洲一区二区三区欧美精品 | 国产精品欧美三级在线观看| 欧美大陆日韩一区二区三区| 在线看的中文av网址导航| 欧美老人与小伙子性生交| 亚洲精品成人天堂一二三| 日本伦理在线观看中文字幕| 久久婷婷色一区二区三区| 黄页网站免费观看小视频| 97色伦在色在线播放免费| 一区二区三区久久久久国产精品 | 亚洲精品一区二区三区麻豆| 国产精品宅福利无圣光视频| 欧美中文字幕精在线不卡| 日韩一区二区三区自拍偷拍| 小泽玛利亚av在线视频| 蜜臀国产综合久久第一页| 精品日韩av高清一区二区三区| 成人黄页网站在线观看视频| 亚洲一区二区三区高清影片| 国产欧美一区二区图片专区| 欧美日韩加勒比一二三区| 国产精品日韩欧美在线第一页| 精品国产一区二区色老头 | 黄色片黄色片黄色片亚洲黄色片| 久久精品国产亚洲av蜜屁股| 黑寡妇精品欧美一区二区毛| 小泽玛利亚电影免费在线观看| 亚洲av另类激情一卡二卡不卡| 欧美一区二区三区激情免费| 国产精品熟女av老熟女| 欧美一级高清片国产特黄大片一 | 欧美自拍嘿咻内射在线观看| 欧美不卡一区二区在线视频| 亚洲精品涩涩在线观看| 中文字幕人妻系列东京热| 国产欧美一区二区三区精剧| 欧美日一区二区三区精品| 精品一区二区三区高潮视频| 日韩欧美精品视频一区二区三区| 欧美大陆日韩一区二区三区 | 99re热这里只有精品视频| 最好看的日韩中文字幕电影| 国产精品色午夜免费视频69| 久久综合九色综合88中文字幕有码| 蜜臀人妻精品一区二区免费| 成人黄页网站在线观看视频| 97性潮久久久久久久久播| 亚洲电影天堂之男人的服务天堂| 午夜福利国产盗摄久久性| 久久五月婷婷爱综合亚洲| 国产综合久久久一区二区三区| 成人欧美一区二区三区在线小说| 红杏开心五月天中文字幕| 青青草亚洲综合成人一区| 久久国产综合伊人77777| 黄色av网站未满十八周岁在线播放| 日韩一区二区三区精品视频第3页| 91久久国产精品久久91| 5252欧美在线男人的天堂| 欧美日韩国产欧美日韩国产欧美日韩 | 国产欧美日韩精品高清二区综合区 | 大香蕉欧美人妻一二三区| 后入亚洲美女一区二区三区| 日本一区二区国产好的精华液| 免费主播福利视频韩国日本| 欧美黄色男人日女的阴道| 色婷婷在线免费观看视频| 精品中文字幕久久久久久| 欧美激情精品久久久高清| 亚洲av中的一区二区三区四区| 国产主播欧美日韩在线播放| av电影在线观看中文字幕哦| 国产精品成人又粗又长又爽| 欧美老人与小伙子性生交| 小泽玛丽视频在线观看| 欧美激情欲高潮视频高清| 国产精品激情视频一区二区三区| 精品国产18久久久久二| 欧美日韩久久久久免费看| 欧美一区二区三区亚洲一区| 男人av天堂男人的网站| 亚洲人成伊人成综合网76| 亚洲国产精品无石码久久| 欧美变态口爆一区二区三区| 国产精东av剧情在线一区二区| 99久久精品氩 99久久久| 亚洲十大美女色爽av毛片下载| 国产精品一区二区色蜜蜜| 亚洲av乱码一区二区三区绯色| 黄色av网址在线免费观看| 美女毛片一区二区三区四区| 99人妻精品日韩欧美一区二区三区| 2022国产精品黄色片| 欧美日韩综合中文字幕一区二区| 国产一区二区三区色噜噜蝌蚪 | 激情综合网五月六月丁香国产| 性色av资源一区二区三区| 日本人妻与家公的伦理片 | 欧美日韩一区二区啪啪啪| 妖精视频一区二区三区四区| 久久久久夜色国产精品亚洲av| 国产精品亚洲专区一区二区三区 | 免费在线观看91精品美女| 亚洲另类国产精品一区二区三区| 91视在线国内在线播放| 国产精品中文字幕免费观看| 飞极速在线观看日韩av| 精品中文字幕久久久久久 | 国产欧美一区二区三区奶水| 国产伦精品99久久自偷国产| 欧洲欧美精品日韩色午夜| 日本免费电影在线观看一区二区三区 | 日韩av一区二区三区免费观看 | 大香蕉欧美人妻一二三区| 亚洲日本精品麻豆一区国产 | 欧美视频黄页大全在线观看| 中文字幕高清在线一区二区不卡| 蜜臀久久人妻99精品三区四区 | 伊人影院在线免费观看电影| 在线观看特黄片一区二区二区| 国产成人凹凸视频在线观看不卡| 国产成人久久精品一区二区三区欧美| 国语自产拍在线观看国产精品 | 日韩国产另类欧美在线观看| 五月开心婷婷六月丁香婷| av网站大全在线免费观看| 国产精品国产三级农村妇女| 欧美精品欧美一区二区精品久久久 | 国产电影一区二区三区在线观看 | 久久久国产精品一区久久| 粉嫩欧美一区二区三区高清影视| 美国毛片亚洲社区成人看| 精品久久久久久99蜜桃| 亚洲自拍亚洲自拍亚洲自拍| 日韩欧美亚洲国产精品字幕久久久 | 黄色a级三级三级三级的电影| 日韩亚洲高清一区二区三区| 亚洲av另类激情一卡二卡不卡| 亚洲产国偷v产偷v自拍一区| 国产一区二区三区网站视频| 亚洲欧美日韩综合另类一区| 亚洲精品中文字幕无乱码麻豆| 91香蕉视频在线观看污污污| 国产精品一区在线观看网址| 欧美高清亚洲一区二区在线观看| 午夜激情福利在线免费看| 国内偷拍高清精品视频免费| 在线看片日本免费一区二区| 91久久精品一区二区三区大| 欧美一区二区三区免费观看视频 | 欧美一区2区三区4区网站| 中文字幕一区二区三区欧美日韩| 久久99综合国产精品亚洲首页| 91国内揄拍国内精品人妻| 亚洲精品成人av一区二区| 国语自产拍在线观看国产精品 | 中美日韩在线一区黄色大片| 日韩在线欧美在线国产在线| 欧美色综合天天综合高清网| 国产精品久久久久久久久久久痴汉| 人人妻人人澡人人爽人人精品免费| 国产乱人精品视频69av| 欧美激情第一页在线播放 | 久久久国产成人精品二区| 国产av一区二区日夜精品剧情| 亚洲av噜噜在线最新网站| 香蕉91成人一区二区三区网站| 97精品久久久中文字幕| 亚洲欧美精品激情在线观看 | 最近中文字幕高清免费大全| 顶级尤物极品女神福利视频| 久久久精品欧美一区二区免费| 欧美一区二区三区四区五| 欧美日韩中文字幕每日更新| 婷婷四房综合激情五月在线| 欧美一区二区三区四区五区 | 国产欧美一区二区精品婷婷| 久久国产精品男人的天堂av| 91偷国自产一区二区三区蜜臀| 日韩特一级a毛大片欧美大片| 日韩特一级a毛大片欧美大片| 亚洲色图国产精品一区二区三区| 欧美国产一区二区三区在线播放| 国产精品亚洲综合久久婷婷| 蜜桃视频一区二区三区在线观看| 色噜噜色狠狠狠狠狠综合色一| 亚洲熟女熟妇av一区二区三区| 亚洲女同女同女同女同女同69| 亚洲人成网站18禁止天堂| 日韩中文字幕久久一二三区 | 噜噜噜久久亚洲精品国产品| 亚洲精品区国产精品99| 欧美日韩3一区二区三区精品| 亚洲中文字幕丝袜熟女久久| 亚洲成a人片在线观看无遮挡 | 一级a做爰视频在线观看| 成人欧美一区二区三区视频 | 欧美激情一区二区三区精品| 国产欧美一区二区三区精剧| 欧美成人精品第一区二区三区| 亚洲av午夜精品久久久| 国产av剧情片一二三区| 亚洲熟女少妇一区二区三区| 久久麻豆精亚洲av品国产精品| 欧美激情一区二区三区四区| 美女爱爱图片一区二区三区| 人妻精品未满十八少妇精品| 欧美中文字幕一区二区综合我| 欧美国产亚洲自拍第二页| 亚洲一区二区三区四区91| 高清亚洲中文字幕一区二区| 亚洲福利欧美日韩午夜一区| 久久av不卡人妻一区二区三区| 久久久国产综合av天堂| 亚洲av日韩av在线播放| 日韩欧美国产在线看免费| 人人妻人人澡人人爽人人精品不卡| 无人区码一码二码三码区| 精品人妻少妇嫩草av码专区| 人人妻人人澡人人爽人人精品免费 | 亚洲欧美日韩偷拍一区二区三区 | 一区二区三区视频二男一女| 日韩av一区二区三区网站| 极品少妇被弄得99精品欧美| 亚洲欧美另类综合图片专区| 亚洲va欧美va人人爽高清| 日本东京热久久成人免费电影| 国产一级二级三级aa视频| 欧美韩一区二区三区电影免费看| 欧美日韩亚洲中文字幕一区| 最新国产美女一区二区三区 | 黄页男女视频网址大全免费观看| 极品少妇被弄得99精品欧美| 欧美日韩国产精品系列区| 亚洲国产成人精品毛片九色| 成人激情毛片免费在线看| 国产丝袜美女av一区二区三区| 日韩a人毛片精品无人区乱码| 亚洲国产精品久久久二区| 欧美午夜精品久久久久久黑人| 国产日韩欧美一区二区在线高清| 亚洲欧美日韩综合第一第二区| 国产一区二区三区网站视频| 婷婷99久久久精品综合| 国产电影一区二区三区高清| 小说区图片区偷拍区视频| 青青草av一区二区三区| 一级国产麻豆片在线观看| 超碰超碰超碰超碰超碰图片| 欧美老人激情五月综合网| 亚洲国产欧美亚洲国产欧美 | 雅日韩欧美一区二区三区| 综合欧美视频一区二区三区| 久久精品亚洲熟女av蜜謦| 一区二区三区四区蜜桃| 欧美不卡一二三在线视频 | 亚洲无人区乱码中文字幕| 国产一区二区三区网站视频| 色爱区综合激情五月综合激情| 国产精品初高害羞小美女| 亚洲加勒比精品一区二区| 欧美激情国产日韩视频一区| 五月天丁香色婷婷中文字幕 | 亚洲欧美色欧另类欧日韩| 日韩国产精品综合高清av=| 久久久精品国产亚洲av网丝祙| 精品亚洲午夜久久久久四季| 久久久国产精品一区久久 | 国产一区二区三区色噜噜91| 96国语自产免费精品视频 | 你懂的国产精品永久在线| 欧美天堂一区一区二三区| 日本免费一区二区三区视频在线| 日韩精品a欧美精品a亚洲精品| 黄色三级av在线免费播放| 亚洲福利欧美日韩午夜一区| 日韩一区二区三区四区在线观看视频 | 国产精品国产三级国产av主播| 日韩十八线网站操操搞黄色 | 欧美午夜精品久久久久久黑人| 美女毛片一区二区三区四区| 国产在线精品二区一东京热| 色噜噜色狠狠狠狠狠综合色一| 国产精品一区二区三区色噜噜| 亚洲欧美日韩精品中文字幕在线| 暗交小拗女一区二区三区| 亚洲国产一区二区在线网站网址 | 国产亚洲精品久久久一区| 今天有什么电影可以看在电影院| 久久久91精品国产一区二区精品| 91国内揄拍国内精品人妻| 久久久精品一区二区免费| 激情综合网五月六月丁香国产| 亚洲五月六月丁香激情网站| 亚洲国产色一区二区三区| 少妇人妻精品一区三区二区| 91丝袜精品久久久久久久人妻| 亚洲精品亚洲人在线观看| 日韩欧美中文字幕在线四区| 国产美女直播在线一区二| 国产精品日韩欧美在线第一页| 日韩欧美中文字幕1234区| 国产拍欧美日韩视频一区| 高清不卡一卡二卡区在线| 黄色三级电影一区二区三区四区 | 亚洲精品我不卡中文字幕乱码| 五月婷婷激情桃花床戏视频网| 小泽玛利亚av在线视频| 一区二区三区在线视频欧美| 5252欧美在线男人的天堂| 美美女高清毛片免费视频| 精品久久久久久久免费影院大全| 亚洲日本中文字幕高清在线| 中文字幕高清在线一区二区三区| 欧美一区二区三区综合色| 久久偷拍国内亚洲青青草| 成人特黄特色毛片免费看| 伊人天堂午夜精品福利网| 色狠狠婷婷一区二区三区| 日韩一区日韩二区日韩三区 | 日韩国产一区二区三区av| 久久久精品一区二区免费| 都市激情校园春色亚洲成人| 欧美加勒比一区二区三区| 久久精品色妇熟妇丰满人妻| 午夜福利国产盗摄久久性| 国产无套精品白浆在线观看| 日韩中文字幕久久一二三区| 欧美中文字幕精在线不卡| 色综合一区二区日本韩国亚洲| 国产欧美在线一区二区三| 日本高清视频一区二区在线观看| 欧美色老熟妇与性老熟妇| 欧美不卡一二三在线视频| 免费看污片网站在线观看| 青青草亚洲综合成人一区| 午夜福利合集极品精品视频| 精品国产一区二区色老头| 中文字幕精品一区二区三区老狼| 久久精品国产av一区二区三区| 日韩a国产v亚洲欧美精品| 亚洲国产精品久久久久性色av| 欧美黄片一区二区三区在线观看| 精品人妻久久久久久888不卡| 日韩亚洲高清一区二区三区| 欧美日韩一区二区午夜福利| 精品女同一区二区三区亚亚洲洲| 中文字幕黄色在线免费观看| 国产黄色一级电影一区二区| 五月天丁香色婷婷中文字幕| 哪里可以看日本动作电影| 婷婷六月开心六月色六月| 蜜桃av一区二区三区在线观看| 国产丝袜美腿一区二区三区| 国产女主播一区二区三区四区 | 亚洲欧美另类人妻第一页| 日韩特一级a毛大片欧美大片 | 国产精品一区二区三区色噜噜| 亚洲国产欧美日韩成人精专区| 同房后下面流黄黄的液体| 亚洲国产韩国欧美在线天堂| 黄色三级av在线免费播放| 欧美成人高清精品一区二区| 99国产精品久久久久久久久| 91久久国产综合久久91| 老司机精品成人免费视频| 国产另类av一区二区三区| 亚洲精品涩涩在线观看| 综合欧美视频一区二区三区| 国产成人亚洲欧美在线二区小说| 伊人婷婷涩六月丁香七月| 国产自拍偷拍在线一区二区| 日本精品免费偷拍小视频网| 亚洲欧美另类人妻第一页| 大香蕉再在线大香蕉再在线| 乱色老熟妇一区二区三区| 欧美日韩精品视频一区二区三区四区| 欧美日韩加勒比激情系列| 欧美中文字幕精在线不卡 | 日韩精品免费不卡av一区二区| 日韩av毛片高清免费在线观看| 红桃视频污在线观看视频在线观看 | 美女毛片一区二区三区四区| 日韩欧美一区二区三区中出内射| 成人欧美一区二区三区视频| 亚洲国产日韩精品一区二区三区| 色狠狠一区二区三区蜜桃av| 欧美日韩中文字幕一区不卡 | 国产精品久久一区二区三区青青| 日韩乱码免费一区二区三区| 欧美黄片一区二区三区在线观看| 综合图区亚洲欧美另类图片 | 成人特黄特色毛片免费看| 欧美高清亚洲一区二区在线观看| 欧美日韩久久久久免费看| 一区二区三区四区蜜桃| 欧美一区二区三区免费在线观看 | 欧美视频黄页大全在线观看| 亚洲av日韩高清在线观看 | 日本一区欧美二区国产三区| 国产亚洲精品综合一区二区| 欧美成人精品第一区二区三区| 88精品视频一区二区三区四区 | 日本一区二区在线视频观看| 精品一区二区三区成人免费视频 | 丰满少妇人妻视频一区二区三区| 亚洲熟妇中文字幕五十路| 亚洲av成人一区二区三区在线| 大香蕉再在线大香蕉再在线| 今天有什么电影可以看在电影院| 小泽玛利亚影片在线观看 | 久久97久久99久久综合欧美| 国产精品国产三级国av在线观看 | 国产色综合一区二区三区视频精品| 精品夜夜嗨av一区二区| 午夜精品内射少妇视频在线| 欧美日本国产一区二区三区| 国产美女捏自己奶头91| 人人妻人人澡人人爽人人精品免费 | 精品人妻潮喷久久久又裸又黄| 欧美成人午夜电影在线观看| 亚洲综合精品一区二区三区| 一级a做爰视频在线观看| 精品日韩亚洲一区二区三区| 日本免费播放器一区二区 | 一本大道综合伊人精品热热 | 亚洲熟妇中文字幕五十路| 国产亚洲加勒比久久精品| 99久久免费国产精品2021| 国产流白浆一区二区三区免费视频 | 国产精品色午夜免费视频| 极品少妇被弄得99精品欧美| 日本一区二区三区免费不卡视频| 青青草av一区二区三区| 一区二区三级电影在线观看| 亚洲色图一区二区三区视频| 日韩欧美国产中文字幕综合| 丰满少妇人妻视频一区二区三区 | 青青草亚洲在线一区观看| 97精品久久久中文字幕| 欧美一区二区三高清在线观看| 欧美日韩国产中文在线一区二区| 日本a级一区二区资源网站| 国产精品亚洲综合久久久久久久| 国产69精品久久777的观感 | 亚洲国产精品久久久二区| 91麻豆精品国产91久久久熟女| 91久久国产综合久久91| 国产亚洲欧美一区二区精| 国产亚洲欧美一区二区精| 日韩欧美国产一区二区在线| 午夜天堂精品久久久久91色爱| 亚洲欧美国产一区二区三区奶水 | 综合久久久久综合综合久久久久| 午夜天堂精品久久久久91色爱| 99人妻精品日韩欧美一区二区三区| 国产精品久久精品久久国产| 97久久夜色精品国产蜜桃| 国产在线精品亚洲第1页| 欧美日韩加勒比一二三区 | 国产精品1区二区三区| 国产精品成人又粗又长又爽| 精品国产一区二区三区久久久性| 精品人妻潮喷久久久又裸又黄| 蜜臀av一区二区三区蜜乳| 午夜亚洲精品久久久久久小说| 亚洲欧美日韩人成在线播放| 国产美女捏自己奶头91| 欧美大陆日韩一区二区三区 | 国产亚洲精品福利视频| 日韩欧美亚洲乱码中文字幕 | 亚洲人成伊人成综合网76| 欧美激情五月天在线观看| 色狠狠婷婷一区二区三区| 91国内揄拍国内精品人妻| 国产精品一区二区剧情熟女| 欧美亚洲国产日韩在线观看| 韩国三级电影善良的嫂子| 亚洲精品色婷婷在线观看| 一区二区亚洲欧美在线观看| 日韩激情视频免费在线观看| 日本免费播放器一区二区| 96国语自产免费精品视频| 污污污的网站在线免费看| 高清亚洲中文字幕一区二区| 一区二区三区视频二男一女| 视频一区二区不中文字幕| 手机在线观看网址你懂的| 亚洲欧美国产精品一区二区三区| 国产亚洲精品综合一区二区| 日韩激情视频免费在线观看| 国产精品国产三级国产专区| 影音中文字幕av资源在线| 一区二区三区在线视频欧美| 日韩国产一区二区三区av| 亚洲天堂熟女一区二区三区| 色综合天天综合网国产人| 欧美日韩精品一区二区在线看| 日韩精品在线观看一二三| 国产精品福利网站在线观看| 久久精品亚洲欧美日韩精品中文字幕 | 日韩精品一区二区三区四区不卡| 精品精品国产一区二区性色av| 国产看片色网站亚洲av| 亚洲欧美另类人妻第一页| 亚洲精品久久久久久宅男| 欧美一区二区日本国产激情| 国产自拍偷拍在线一区二区| 一区二区三级电影在线观看| 日韩欧美中文字幕在线四区| 亚洲av中的一区二区三区四区| 亚洲熟妇中文字幕五十路| 国产精品久久久精品一级| 中文字幕欧美老熟妇一区二区| 欧美日韩中文字幕午夜在线| 欧美精品高清在线一区二区三区| 亚洲精品乱码国产精品乱码| 精品国产熟女一区二区三区| 亚洲天堂男人天堂一区二区| 亚洲成人精品国产一区二区| 国产一区二区三区精品区在线| 日韩精品亚洲一区二区三区四区| 日本精品一区二区电影在线观看| 亚洲一区二区在线观看的av| 国语自产拍在线观看国产精品 | 俺来也官网欧美久久精品| 色悠久久久久综合网小说| 久久国产午夜精品理论片3| 亚洲成人精品国产一区二区| 日韩电影免费看中文字幕| 日韩伦精品一区二区三区一级 | 三级av电影在线免费观看| 亚洲中文精品久久久久久久38| 国产一级性片在线观看| 中文字幕精品久久一区二区三区| 亚洲综合欧美综合视频一区| 国产乱码欧美乱码在线视频| 不卡在线一一区二区三区91| 国产看片色网站亚洲av| 人人妻人人玩人人澡人人爽理论片 | 国产小黄片免费观看小黄片| 免费无遮挡午夜视频网站| 色婷婷亚洲激情人妻交换小说 | 欧美三级韩国三级日本三斤| 蜜桃视频一区二区三区在线观看 | 18禁黄网站禁片免费观| 亚洲中文精品久久久久久久38|